精英家教网 > 初中数学 > 题目详情
如图,在一个直角三角形的内部作一个长方形ABCD,其中EB=5m,BF=12m,AB和BC分别在两直角边上.设AB=xm,长方形的面积为ym2,要使长方形的面积最大,其边长x应为(  )
分析:欲求使长方形的面积最大时的边长x,先利用:长方形的面积=大三角形的面积-两个小三角形的面积表示出函数y,再利用二次函数的性质求出最大值及相应的x的值即可.
解答:解:根据题意得:AD=BC=
y
x
,上边三角形的面积为:
1
2
(5-x)
y
x
,右侧三角形的面积为:
1
2
x(12-
y
x
),
所以y=30-
1
2
(5-x)
y
x
-
1
2
x(12-
y
x
),
整理得y=-
12
5
x2+12x,
=-
12
5
[x2-5x+(
5
2
2-
25
4
],
=-
12
5
(x-
5
2
2+15,
∵-
12
5
<0
∴长方形面积有最大值,此时边长x应为
5
2
m.
故要使长方形的面积最大,其边长
5
2
m.
故选D.
点评:本题考查的是相似三角形的应用及二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
底边
=
BC
AB
.容易知道一个角的大小与这个角的正对值也是相精英家教网互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad 60°的值为( B )
A.
1
2
;B.1;C.
3
2
;D.2
(2)对于0°<A<180°,∠A的正对值sad A的取值范围是
 

(3)已知sinα=
3
5
,其中α为锐角,试求sadα的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:

(1)sad 的值为( ▼ )
A.B.1 C.D.2
(2)对于,∠A的正对值sad A的取值范围是  ▼   .
(3)已知,其中为锐角,试求sad的值.

查看答案和解析>>

科目:初中数学 来源:2011届北京市昌平区初三上学期期末考试数学卷 题型:解答题

教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:

(1)sad 的值为( ▼ )

A.B.1 C.D.2
(2)对于,∠A的正对值sad A的取值范围是  ▼   .
(3)已知,其中为锐角,试求sad的值.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年北京市昌平区初三上学期期末考试数学卷 题型:解答题

教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.

类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时

sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.

根据上述对角的正对定义,解下列问题:

(1)sad 的值为(  ▼  )

 A.             B. 1                  C.                  D. 2

(2)对于,∠A的正对值sad A的取值范围是   ▼   .

(3)已知,其中为锐角,试求sad的值.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线轴,轴分别交于点A,点B,动点P在第一象限内,由点P轴,轴所作的垂线PMPN(垂足为MN)分别与直线AB相交于点E,点F,当点P运动时,矩形PMON的面积为定值2.

   (1)求的度数;

   (2)求证:△∽△

(3)当点EF都在线段AB上时,由三条线段

       AEEFBF组成一个三角形,记此三角

      形的外接圆面积为,△的面积为

      试探究:是否存在最小值?若存在,

请求出该最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案