精英家教网 > 初中数学 > 题目详情
19.公路施工中需要建设穿过小山的隧道DE,采用从两边同时施工的方法,甲工程队从D向E施工,乙工程队从E向D施工,为了使两工程队施工能在山中对接,需要保证A,D,E,C,在同一直线上.为此,在
同一水平面上取A,B,C三点,连接AD,AB,BC,使∠ABC=90°,∠A=50°,AB=2km,通过选择∠C的适当大小来确定E点,保证A,D,E,C在同一直线上.
(1)求∠C的大小;
(2)若AD=100m,CE=200m,求隧道DE的长(结果保留整数).
(参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)

分析 (1)根据直角三角形两锐角互余,即可解决问题;
(2)在Rt△ABC中,AB=2000,∠A=50°,根据AC=$\frac{AB}{cosA}$,求出AC即可解决问题.

解答 解:(1)∵A,D,E,C在同一直线上,
∴D,E在△ABC的边AC上;
∵∠ABC=90°,∠A=50°,
∴∠C=90°-50°=40°.

(2)在Rt△ABC中,AB=2000,∠A=50°,
∴AC=$\frac{AB}{cosA}$=$\frac{2000}{cos50°}$=$\frac{2000}{0.643}$≈3110,
∴DE≈AC-AD-CE=3110-100-200=2810(m).

点评 本题考查解直角三角形、锐角三角函数等知识,熟练掌握锐角三角函数的定义是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,AB为⊙O的直径,E是⊙O外一点,过点E作⊙O的两条切线ED、EB,切点分别为点D,B,连接AD并延长交BE延长线于点C,连接OE.
(1)试判断OE与AC的关系,并说明理由;
(2)填空:
①当∠BAC=45°时,四边形ODEB是正方形.
②当∠BAC=30°时,$\frac{AD}{DE}$的值为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)点D从B向C运动时,∠BDA逐渐变小(填“大”或“小”);设∠BAD=x°,∠BDA=y°,求y与x的函数关系式;
(2)当DC的长度是多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状也在改变,当∠BDA等于多少度时,△ADE是等腰三角形?判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪.如图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°
(1)求B,C的距离.  
(2)通过计算,判断此轿车是否超速.(tan31°≈0.6,tan50°≈1.2,结果精确到1m)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解不等式组:$\left\{{\begin{array}{l}{3x+1≥2x}\\{4(x-1)<2x}\end{array}}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解方程组
(1)$\left\{\begin{array}{l}{3x+4y=16}\\{5x-6y=33}\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{x}{2}+\frac{y}{3}=7}\\{3(x-2)=2(y-9)}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
(1)$\root{3}{\frac{1}{8}}$+$\sqrt{(-3)^{2}}$-$\frac{5}{2}$$\root{3}{-\frac{1}{125}}$
(2)|$\sqrt{3}$-$\sqrt{2}$|+|$\sqrt{3}$-2|-|$\sqrt{2}$-1|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知有甲、乙两个不透明的袋子,甲袋内装有标记数字-1,2,3的三张卡片,乙袋内装有标记数字2,3,4的三张卡片(卡片除数字不同其余都相同).先从甲袋中随机抽取一张卡片,记录下数字,再从乙袋中随机抽取一张卡片,记录下数字.
(1)利用列表或画树状图的方法(只选其中一种)表示出所抽两张卡片上数字之积所有可能的结果:
(2)求抽出的两张卡片上的数字之积是3的倍数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:(a+3)(a-3)+a(1-a),其中a=10.

查看答案和解析>>

同步练习册答案