精英家教网 > 初中数学 > 题目详情
18.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.
小明的作法:
(1)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)
(2)在射线BM上取一点D,使得BD=BA;
(3)连结AD,交BC于点E.线段AE即为所求.
小明的作法所蕴含的数学道理为等边对等角;两直线平行,内错角相等.

分析 根据作图方法,AB=DB利用等边对等角可得∠BAD=∠BDA,根据AB∥AC可得∠BDA=∠DAC,然后利用等量代换可得AE平分∠BAC.

解答 解:∵AB=DB,
∴∠BAD=∠BDA(等边对等角),
∵AB∥AC,
∴∠BDA=∠DAC(两直线平行,内错角相等),
∴∠BAE=∠CAE(等量代换),
即AE平分∠BAC.
故答案为:等边对等角;两直线平行,内错角相等.

点评 此题主要考查了复杂作图,以及平行线的性质,关键是掌握等边对等角,两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.你知道古代数学家怎样解一元二次方程吗?以x2-2x-3=0为例,大致过程如下:
第一步:将原方程变形为x2-2x=3,即x(x-2)=3.
第二步:构造一个长为x,宽为(x-2)的长方形,长比宽大2,且面积为3,如图1所示.
第三步:用四个这样的长方形围成一个大正方形,中间是一个小正方形,如图2所示.
第四步:计算大正方形面积用x表示为(2x-2)2
由观察可得,大正方形面积等于四个长方形与小正方形面积之和,得方程(2x-2)2=4×3+22,两边开方可求得:x1=3,x2=-1.
(1)第四步中横线上应填入(2x-2)2;(2x-2)2=4×3+22
(2)请参考古人的思考过程,解方程x2-x-1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在平行四边形ABCD中,点E是BC边的中点,延长AE交DC的延长线于点F,连接AC、BF.
(1)如图1,求证:四边形ABFC是平行四边形;
(2)如图2,连接DE交AC于点G,若DE⊥AF,∠ADE=30°,判断四边形ABFC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知,如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,求证:BF⊥AC.
证明:
∵∠AGF=∠ABC(已知)
∴FG∥BC(同位角相等,两直线平行)
∴∠1=∠FBC(两直线平行,內错角相等)
又∵∠1+∠2=180°(已知)
∴∠2+∠FBC=180°(等量代换)
又∵DE⊥AC(已知)
∴∠DEC=∠DEA(垂直的定义)
∴∠BFC=∠DEC=90°(两直线平行,同位角相等)
∴BF⊥AC(垂直的定义)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,一圆柱高4m,底面周长为6m,现需按如图方式缠绕一圈彩带进行装饰,则彩带最短要用10m.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.在Rt△ABC中,∠C=90°,若a=15,c=25,则b=20.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,⊙O的半径为1,OA=2.5,∠OAB=30°,则AB与⊙O的位置关系是相离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D.
(1)利用尺规作⊙O,使⊙O经过点A,D,且圆心O在AB上,并标出⊙O与AB的另一个交点E(保留作图痕迹,不写作法);
(2)在你所作的图中,
①判断直线BC与⊙O的位置关系,并说明理由;
②若AB=6cm,BD=2$\sqrt{3}$cm,求:线段BD,BE与劣弧$\widehat{DE}$所围成的图形面积(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.若a+b=4,ab=3,求下面代数式的值
(1)a2b+ab2
(2)a2+b2

查看答案和解析>>

同步练习册答案