【题目】某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 人;
(2)补全条形统计图,并在图上标明相应的数据;
(3)扇形统计图中圆心角α= 度;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.
【答案】(1)1000;(2)补全的条形统计图如图所示;见解析;(3)72;(4)该校18000名学生一餐浪费的食物可供900人食用一餐.
【解析】
(1)根据不剩的学生数和所占的百分比可以求得这次被调查的同学数;
(2)根据(1)中的结果和条形统计图中的数据可以求得剩少量的学生数,从而可以将条形统计图补充完整;
(3)根据统计图中的数据可以求得扇形统计图中圆心角α的度数;
(4)根据题目中的数据可以得到该校18000名学生一餐浪费的食物可供多少人食用一餐.
(1)600÷60%=1000(人),
即这次被调查的同学共有1000人,
故答案为:1000;
(2)剩少量的学生有:1000﹣600﹣150﹣50=200(人),
补全的条形统计图如右图所示;
(3)扇形统计图中圆心角α=360°×=72°,
故答案为:72;
(4)18000÷1000×50=900(人),
答:该校18000名学生一餐浪费的食物可供900人食用一餐.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在第一象限,BA⊥y轴于点B,反比例函数y=(x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为( )
A.B.1C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△A1B1C1,△A2B2C2,△A3B3C3,…,△AnBnCn均为等腰直角三角形,且∠C1=∠C2=∠C3=…=∠Cn=90°,点A1,A2,A3,…,An和点B1,B2,B3,…,Bn分别在正比例函数y=x和y=﹣x的图象上,且点A1,A2,A3,…,An的横坐标分别为1,2,3…n,线段A1B1,A2B2,A3B3,…,AnBn均与y轴平行.按照图中所反映的规律,则△AnBnCn的顶点Cn的坐标是____.(其中n为正整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(,),AB=1,AD=2.
(1)直接写出B、C、D三点的坐标;
(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数()的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),两个等腰直角三角形ABC和DEF有一条边在同一条直线l上,DE=2,AB=1.将直线EB绕点E逆时针旋转45°,交直线AD于点M.将图(1)中的△ABC沿直线l向右平移,设C、E两点间的距离为k.请解答下列问题:
(1)①当点C与点F重合时,如图(2)所示,此时的值为 .
②在平移过程中,的值为 (用含k的代数式表示).
(2)将图(2)中的△ABC绕点C逆时针旋转,使点A落在线段DF上,如图(3)所示,将直线EB绕点E逆时针旋转45°,交直线AD于点M,请补全图形,并计算的值.
(3)将图(1)中的△ABC绕点C逆时针旋转α(0°<α≤45°),将直线EB绕点E逆时针旋转45°,交直线AD于点M,计算的值(用含k的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.
(1)求证:△DOE≌△BOF;
(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com