精英家教网 > 初中数学 > 题目详情
10.如图1,AB是⊙O的直径,E是AB延长线上一点,EC切⊙O于点C,OP⊥AO交AC于点P,交EC的延长线于点D.
(1)求证:△PCD是等腰三角形;
(2)CG⊥AB于H点,交⊙O于G点,过B点作BF∥EC,交⊙O于点F,交CG于Q点,连接AF,如图2,若sinE=$\frac{3}{5}$,CQ=5,求AF的值.

分析 (1)连接OC,由切线性质和垂直性质得∠1+∠3=90°、∠2+∠4=90°,继而可得∠3=∠5得证;
(2)连接OC、BC,先根据切线性质和平行线性质及垂直性质证∠BCG=∠QBC得QC=QB=5,而sinE=sin∠ABF=$\frac{3}{5}$,可知QH=3、BH=4,设圆的半径为r,在RT在△OCH中根据勾股定理可得r的值,在RT△ABF中根据三角函数可得答案.

解答 解:(1)连接OC,

∵EC切⊙O于点C,
∴OC⊥DE,
∴∠1+∠3=90°,
又∵OP⊥OA,
∴∠2+∠4=90°,
∵OA=OC,
∴∠1=∠2,
∴∠3=∠4,
又∵∠4=∠5,
∴∠3=∠5,
∴DP=DC,即△PCD为等腰三角形.
(2)如图2,连接OC、BC,

∵DE与⊙O相切于点E,
∴∠OCB+∠BCE=90°,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠OBC+∠BCE=90°,
又∵CG⊥AB,
∴∠OBC+∠BCG=90°,
∴∠BCE=∠BCG,
∵BF∥DE,
∴∠BCE=∠QBC,
∴∠BCG=∠QBC,
∴QC=QB=5,
∵BF∥DE,
∴∠ABF=∠E,
∵sinE=$\frac{3}{5}$,
∴sin∠ABF=$\frac{3}{5}$,
∴QH=3、BH=4,
设⊙O的半径为r,
∴在△OCH中,r2=82+(r-4)2
解得:r=10,
又∵∠AFB=90°,sin∠ABF=$\frac{3}{5}$,
∴AF=12.

点评 本题主要考查切线的性质、平行线的性质及三角函数的应用等知识的综合,根据切线性质和平行线性质及垂直性质证∠BCG=∠QBC是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边的中点,则EM+CM的最小值为3$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.已知二次函数y=ax2+bx+c(a>0)的图象经过点A(-1,2),B(2,5),顶点坐标为(m,n),则下列说法错误的是(  )
A.c<3B.m≤$\frac{1}{2}$C.n≤2D.b<1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:
第1个第2个第3个第4个第n个
调整前的单价x(元)x1x2=6x3=72x4xn
调整后的单价y(元)y1y2=4y3=59y4yn
已知这n个玩具调整后的单价都大于2元.
(1)求y与x的函数关系式,并确定x的取值范围;
(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?
(3)这n个玩具调整前、后的平均单价分别为$\overline{x}$,$\overline{y}$,猜想$\overline{y}$与$\overline{x}$的关系式,并写出推导过程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:
(1)该平台2015年共收到网络诈骗举报多少例?
(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)
(3)2015年每例诈骗的损失年增长率是多少?
(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为(  )
A.5B.7C.8D.$\frac{13}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OD⊥AB于点O,分别交AC、CF于点E、D,且DE=DC.
(1)求证:CF是⊙O的切线;
(2)若⊙O的半径为5,BC=$\sqrt{10}$,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知点A(1,a)是反比例函数y=-$\frac{3}{x}$的图象上一点,直线y=-$\frac{1}{2}x+\frac{1}{2}$与反比例函数y=-$\frac{3}{x}$的图象在第四象限的交点为点B.
(1)求直线AB的解析式;
(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A逆时针旋转60°后得到△ADE,若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是$\frac{π}{2}$(结果保留π).

查看答案和解析>>

同步练习册答案