【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB于点D,且AD=3.
(1)设点A的坐标为(4,4)则点C的坐标为 ;
(2)若点D的坐标为(4,n).
①求反比例函数y=的表达式;
②求经过C,D两点的直线所对应的函数解析式;
(3)在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.
【答案】(1)C(2,2);(2)①反比例函数解析式为y=;②直线CD的解析式为y=﹣x+3;(3)m=3时,S△OEF最大,最大值为.
【解析】
(1)利用中点坐标公式即可得出结论;
(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;
②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;
(3)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.
(1)∵点C是OA的中点,A(4,4),O(0,0),
∴C,
∴C(2,2);
故答案为(2,2);
(2)①∵AD=3,D(4,n),
∴A(4,n+3),
∵点C是OA的中点,
∴C(2,),
∵点C,D(4,n)在双曲线上,
∴,
∴,
∴反比例函数解析式为;
②由①知,n=1,
∴C(2,2),D(4,1),
设直线CD的解析式为y=ax+b,
∴,
∴,
∴直线CD的解析式为y=﹣x+3;
(3)如图,由(2)知,直线CD的解析式为y=﹣x+3,
设点E(m,﹣m+3),
由(2)知,C(2,2),D(4,1),
∴2<m<4,
∵EF∥y轴交双曲线于F,
∴F(m,),
∴EF=﹣m+3﹣,
∴S△OEF=(﹣m+3﹣)×m=(﹣m2+3m﹣4)=﹣(m﹣3)2+,
∵2<m<4,
∴m=3时,S△OEF最大,最大值为
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.
(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(教材呈现)下图是华师版九年级上册数学教材第78页的部分内容.
例1 求证:三角形的一条中位线与第三边上的中线互相平分.
已知:如图,在中,,,.
求证:、互相平分.
证明:连结、.
请根据教材提示,结合图①,写出完整的解题过程.
(结论应用)如图②,连结图①的、,分别与、、交于点、、.
(1)若,求点、之间的距离.
(2)若四边形的面积为2,则的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B的坐标分别为(4,0)、(0,2),点C为线段AB上任意一点(不与点A、B重合).CD⊥OA于点D,点E在DC的延长线上,EF⊥y轴于点F,若点C为DE中点,则四边形ODEF的周长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形ABCD中,对角线AC与BD相交于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是 ( )
A.AB=ADB.OA=OBC.AC=BDD.DC⊥BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点P在直线OD下方时,求面积的最大值.
(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点E、F分别在边AB、AC上,将△AEF沿直线EF折叠,使点A的对应点D恰好落在边BC上.若△BDE是直角三角形,则CF的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,BC=10cm、DC=6cm,点E、F分别为边AB、BC上的两个动点,E从点A出发以每秒5cm的速度向B运动,F从点B出发以每秒3cm的速度向C运动,设运动时间为t秒.若∠AFD=∠AED,则t的值_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com