精英家教网 > 初中数学 > 题目详情

为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?

(1)600;(2)30;(3)500.

解析试题分析:(1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;
(2)由利润=销售价﹣成本价,得,把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;
(3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.
试题解析:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,
300×(12﹣10)=300×2=600,
∴政府这个月为他承担的总差价为600元.
(2)依题意得,
∵a=﹣10<0,∴当x=30时,w有最大值4000.
∴当销售单价定为30元时,每月可获得最大利润4000.
(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40。
∵a=﹣10<0,抛物线开口向下,
∴结合图象可知:当20≤x≤40时,w≥3000.
又∵x≤25,∴当20≤x≤25时,w≥3000.
设政府每个月为他承担的总差价为p元,
.
∵k=﹣20<0,∴p随x的增大而减小.∴当x=25时,p有最小值500.
∴销售单价定为25元时,政府每个月为他承担的总差价最少为500元.

考点:二次函数和一次函数的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3.

(1)请你直接写出“蛋圆”抛物线部分的解析式          ,自变量的取值范围是          
(2)请你求出过点C的“蛋圆”切线与x轴的交点坐标;
(3)求经过点D的“蛋圆”切线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).

(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.

(1)求点A的坐标;
(2)若△OBC是等腰三角形,求此抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.

(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=x2-2kx+3k+4.
(1)顶点在y轴上时,k的值为_________.
(2)顶点在x轴上时,k的值为_________.
(3)抛物线经过原点时,k的值为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.
(1)求抛物线的函数解析式;
(2)求抛物线的对称轴和C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线上有一点M(x0)位于轴下方.
(1)求证:此抛物线与x轴交于两点;
(2)设此抛物线与轴的交点为A(,0),B(,0),且<,求证:<<

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?

查看答案和解析>>

同步练习册答案