精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,4),D为OC的中点.

(1)求m的值;
(2)抛物线的对称轴与 x轴交于点E,在直线AD上是否存在点F,使得以点A、B、F为顶点的三角形与△ADE 相似?若存在,请求出点F的坐标,若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点G,使△GBC中BC边上的高为?若存在,求出点G的坐标;若不存在请说明理由.

(1)-1;(2)(1,4)或(,5);(3)()或().

解析试题分析:(1)由抛物线与y轴交于点C(0,4),把C点的坐标代入解析式建立方程,求出方程的解,就可以求出m的值;
(2)先求出抛物线与x轴的交点坐标,根据抛物线的对称性求出E点的坐标,然后根据对应角不同的情况就可以求出F的不同坐标;
(3)先由待定系数法求出直线BC的解析式,然后由题目的条件求出与直线BC平行且距离为 的直线的解析式,再由抛物线的对称轴与这些与BC平行的直线的解析式构建方程组求出其解,就可以求出G的坐标.
试题解析:(1)抛物线与y轴交于点C(0,4),
∴5+m=4.∴m=-1.
(2)抛物线的解析式为 y=-x2+3x+4.
可求抛物线与x轴的交点A(-1,0),B(4,0).
可求点E的坐标(,0).
由图知,点F在x轴下方的直线AD上时,△ABF是钝角三角形,不可能与△ADE相似,所以点F一定在x轴上方.
此时△ABF与△ADE有一个公共角,两个三角形相似存在两种情况:
时,由于E为AB的中点,此时D为AF的中点,可求 F点坐标为(1,4).
②当时,,解得: .
如图(2)过F点作FH⊥x轴,垂足为H.

∵D是OC的中点,∴OD=2.
∴由勾股定理得:.
, 解得.
由勾股定理得:
∴F的坐标为(,5).
(3)在抛物线的对称轴上存在符合题意的点G.
由题意,可知△OBC为等腰直角三角形,直线BC为y=-x+4.
如图(3),
∵MQ∥BC,QP=,∴由勾股定理,得CQ=5.
∴可求与直线BC平行且距离为的直线为y=-x+9或y=-x-1.
∴点G在直线y=-x+9或y=-x-1上.
∵抛物线的对称轴是直线x=
,解得:.
∴点G的坐标为()或().

考点:1.二次函数综合题;2.两条直线相交或平行问题;3.待定系数法求二次函数解析式;4.等腰直角三角形的性质;5.相似三角形的判定和性质;6.分类思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知一个二次函数的顶点A的坐标为(1,0),且图像经过点B(2,3).
(1)求这个二次函数的解析式.
(2)设图像与y轴的交点为C,记,试用表示(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线经过点A(4,0),B(2,2),连结OB,AB.

(1)求的值;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转l35°得到△OA′B′,写出A′B′的中点P的出标.试判断点P是否在此抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).
(1)求抛物线的解析式及A,B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线过点(2,-2)和(-1,10),与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式.
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,某中学校园有一块长为35m,宽为16m的长方形空地,其中有一面已经铺设长为26m的篱笆围墙,学校设计在这片空地上,利用这面围墙和用尽已有的可制作50m长的篱笆材料,围成一个矩形花园或围成一个半圆花园,请回答以下问题:

(1)能否围成面积为300m2的矩形花园?若能,请写出其中一种设计方案,若不能,请说明理由.
(2)若围成一个半圆花园,则该如何设计?请写出你的设计方案.(π取3.14)
(3)围成的各种设计中,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0). 求二次函数的解析式;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与x轴交于点A(—2,0),交y轴于点B(0,).直过点A与y轴交于点C,与抛物线的另一个交点是D.

(1)求抛物线与直线的解析式;
(2)设点P是直线AD下方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;
(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m与x的函数关系式,并求出m的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线).
(1)求抛物线与轴的交点坐标;
(2)若抛物线与轴的两个交点之间的距离为2,求的值;
(3)若一次函数的图象与抛物线始终只有一个公共点,求一次函数的解析式.

查看答案和解析>>

同步练习册答案