【题目】如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A→C→B路径向终点运动,终点为B点;点Q从B点出发沿B→C→A路径向终点运动,终点为A点.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,当一个点到达终点时另一个点也停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,则当t=______秒时,△PEC与△QFC全等.
【答案】1或或12.
【解析】
根据题意进行分类讨论,根据全等三角形的性质得出CP=CQ,代入得出关于t的方程,求出即可.
①如图1,P在AC上,Q在BC上,
∵PE⊥l,QF⊥l,
∴∠PEC=∠QFC=90°,
∵∠ACB=90°,
∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,
∴∠EPC=∠QCF,
则△PCE≌△CQF,
∴PC=CQ,
即6-t=8-3t,
t=1;
②如图2,P在BC上,Q在AC上,
∵由①知:PC=CQ,
∴t-6=3t-8,
t=1;
t-6<0,即此种情况不符合题意;
③当P、Q都在AC上时,如图3,
CP=6-t=3t-8,
t=;
④当Q到A点停止,P在BC上时,AC=PC,t-6=6时,解得t=12.
∵P的速度是每秒1cm,Q的速度是每秒3cm,
P和Q都在BC上的情况不存在.
故答案为:1或或12.
科目:初中数学 来源: 题型:
【题目】为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.
(1)m= %,这次共抽取了 名学生进行调查;并补全条形图;
(2)请你估计该校约有 名学生喜爱打篮球;
(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,平分交于点.
(1)若BC=7,BD=4,则点到的距离是________;
(2)若,点到的距离是8,则的长是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于实数a,我们规定:用符号[]表示不大于的最大整数,称[]为a的根整数,例如:[]=3,[]=3.
(1)仿照以上方法计算:[]= ;[]= .
(2)若[]=1,写出满足题意的x的整数值 .
(3)如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[]=3→[]=1,这时候结果为1.对145连续求根整数, 次之后结果为1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形纸牌中,AB=8cm,BC=6cm,AC=5cm,沿着过△ABC的顶点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED周长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B、C、D、E在同一条直线上,已知AB = FC,AD = FE, BC=DE.
(1)求证:△ABD≌△FCE.
(2)AB与FC的位置关系是_________(请直接写出结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为(大于秒.
(1)点表示的数是______.
(2)求当等于多少秒时,点到达点处?
(3)点表示的数是______(用含字母的式子表示)
(4)求当等于多少秒时,、之间的距离为个单位长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com