精英家教网 > 初中数学 > 题目详情
已知,如图,AD是△ABC的角平分线,DE∥AC,ED=AF.求证:四边形AEDF是菱形.

【答案】分析:由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠FAD=∠FDA,则可求得AF=DF,故可证明四边形AEDF是菱形.
解答:证明:∵AD是△ABC的角平分线
∴∠EAD=∠FAD
∵DE∥AC,ED=AF
∴四边形AEDF是平行四边形
∴∠EAD=∠ADF
∴∠FAD=∠FDA
∴AF=DF
∴四边形AEDF是菱形.
点评:此题主要考查菱形的判定、角平分线的定义和平行线的性质.此题运用了菱形的判定方法“一组邻边相等的平行四边形是菱形”.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,AD是△ABC的高,试判断∠DAE与∠B、∠ACB之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为(  )
A、3:2B、9:4C、2:3D、4:9

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是⊙O的弦,OB⊥AD于点E,交⊙O于点C,OE=1,BE=8,AE:AB=1:3.精英家教网
(1)求证:AB是⊙O的切线;
(2)点F是弧ACD上的一点,当∠AOF=2∠B时,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.

查看答案和解析>>

同步练习册答案