精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于⊙O,且∠B=60°.过点C作圆的切线l与直径AD的延长线交于点E,AF⊥l,精英家教网垂足为F,CG⊥AD,垂足为G.
(1)求证:△ACF≌△ACG;
(2)若AF=4
3
,求图中阴影部分的面积.
分析:(1)连接CD,OC.根据圆周角定理的推论求得ADC=∠B=60°,根据直径所对的圆周角是直角得AC⊥CD,则根据等角的余角相等得到∠ACG=∠ADC=60°,从而得到△OCD为正三角形,进一步求得∠ECD=30°,证明∠ACF=∠ACG=60°.最后根据AAS即可证明三角形全等;
(2)结合图形,可以把阴影部分的面积转化为三角形COE的面积减去扇形OCD的面积.根据30°的直角三角形的性质即可求得OC、CE的长,从而求解.
解答:(1)证明:如图,连接CD,OC,则∠ADC=∠B=60°.
∵AD是圆的直径,
∴∠ACD=90°
又∵∠ADC=∠B=60°
∴∠CAD=30°
∵EF与圆相切,
∴∠FCA=∠ADC=60°
∴直角△ACF中,∠FAC=30°,
∴∠FAC=∠CAD,
又∵CG⊥AD,AF⊥EF
∴FC=CG
则在△ACF和△ACG中:
∠FAC=∠CAD
∠AFC=∠AGC
FC=CG

∴△ACF≌△ACG(AAS).精英家教网

(2)解:在Rt△ACF中,∠ACF=60°,AF=4
3

∴∠FAC=30°,
∴FC=
1
2
AC,
设FC=x,则AC=2x,
(2x)2-x2=(4
3
2
解得:x=4,
∴CF=4.
在Rt△OCG中,∠COG=60°,CG=CF=4,得OC=
4
3
2
=
8
3
3

在Rt△CEO中,OE=
16
3
3

于是S阴影=S△CEO-S扇形COD=
1
2
OE•CG-
60π•OC2
360
=
32
3
3
-
32π
9
=
96
3
-32π
9
点评:此题综合运用了圆周角定理的推论、等边三角形的判定和性质、全等三角形的判定和性质、30°的直角三角形的性质以及三角形和扇形的面积公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案