精英家教网 > 初中数学 > 题目详情
8.已知a、h、k为三数,且二次函数y=a(x-h)2+k在坐标平面上的图象通过(0,2)、(6,8)两点.若a<0,0<h<6.
(1)试用含a的代数式表示h;
(2)问是否存在满足a和h同时为整数的函数表达式,若存在请写出此关系式,若不存在请简要说明理由;
(3)若二次函数y=a(x-h)2+k在坐标平面上的图象通过(0,m)、(6,n)两点,满足a<0,0<h<6,探究:随着m与n的大小关系的变化,指出对应的h的取值范围.

分析 (1)列出方程组消去k即可解决问题.
(2)不存在.理由是当a是整数时,h不可能是整数.
(3)分三种情形讨论即可.根据抛物线的大致图象,根据顶点式得到抛物线的对称轴为直线x=h,由对称轴位置列出不等式即可解决问题.

解答 解:(1)由题意$\left\{\begin{array}{l}{2=a{h}^{2}+k}&{①}\\{8=a(6-h)^{2}+k}&{②}\end{array}\right.$
②-①得到,6=36a-12ah,
∴h=3-$\frac{1}{2a}$,

(2)不存在.理由如下:
∵a,h是整数,
∵h=3-$\frac{1}{2a}$,
∴当a是整数时,h不可能是整数,
∴不存在.

(3)①当m=n时,h=3.
②当m<n时,则点(0,m)到对称轴的距离大于点(6,n)到对称轴的距离,所以h-0>6-h,
∴h>3,
∴3<h<6.
③当m>n时,则点(0,m)到对称轴的距离小于点(6,n)到对称轴的距离,所以h-0<6-h,
∴h<3,
∴0<h<3.

点评 本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.已知方程组$\left\{\begin{array}{l}3x+2y=4m-5\\ 2x+3y=m\end{array}\right.$的解与x+y=2解相同,则m的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在矩形OABC纸片中,OA=7,OC=5,D为BC边上动点,将△OCD沿OD折叠,当点C的对应点落在直线l:y=-x+7上时,记为点E,F,当点C的对应点落在边OA上时,记为点G.
(1)求点E,F的坐标;
(2)求经过E,F,G三点的抛物线的解析式;
(3)当点C的对应点落在直线l上时,求CD的长;
(4)在(2)中的抛物线上是否存在点P,使以E,F,P为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知方程(m-2)x|m|-1+(n+3)${y}^{{n}^{2}-8}$=6是关于x,y的二元一次方程.
(1)求m,n的值;
(2)求x=$\frac{1}{2}$时,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列方程组中,无解的是(  )
A.$\left\{\begin{array}{l}{x+y=6}\\{x+y=-1}\end{array}\right.$B.$\left\{\begin{array}{l}{x+y=5}\\{2x-2y=10}\end{array}\right.$C.$\left\{\begin{array}{l}{x-y=5}\\{2x+2y=10}\end{array}\right.$D.$\left\{\begin{array}{l}{x+y=4}\\{2x-y=3}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知关于二次函数y=x2-(4k+2)x+4k2+3k的图象与x轴有两个交点.
(1)求k的取值范围;
(2)若二次函数与x轴的两个交点坐标为(a,0),(b,0),并满足(a-b)2=2,求k的值,并写出二次函数的表达式;
(3)如图所示,由(2)所得的抛物线与一次函数y=-3x+$\frac{7}{2}$的图象相交于点C、点D,求三角形CDP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在方程组$\left\{\begin{array}{l}{x=2y-t}\\{2x+y=t-3}\end{array}\right.$中,已知y>9,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知关于x的方程(m+2)x2-2(m-1)x+m+1=0有两个不相等的实数根,并且一次项系数不小于零,试求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知方程(m-5)(m-3)xm-2+(m-3)x+5=0.
(1)当m为何值时,此方程为一元二次方程?
(2)当m为何值时,此方程为一元一次方程?

查看答案和解析>>

同步练习册答案