精英家教网 > 初中数学 > 题目详情
含30°角的直角三角板ABC(∠B=30°)绕直角顶点C沿逆时针方向旋转角α(∠α<90°),再沿∠A的对边翻折得到△A′B′C,AB与B′C交于点M,A′B′与BC交于点N,A′B′与AB相交于点E.
(1)求证:△ACM≌△A′CN;
(2)当∠α=30°时,找出ME与MB′的数量关系,并加以说明.

【答案】分析:(1)要证△ACM≌△A'CN,根据已知,只需证∠ACM=∠A′CN.
很明显都用90°减去∠BCB′就可以得到.再加上∠A=∠A′,AC=A′C,即可证三角形全等.
(2)根据题意可知,∠MCN=∠α=30°,则∠AMC=∠MCN+∠B=60°,那么∠EMB′=60°.
而∠B′=30°,显然在Rt△MB′E中,ME=MB′.
解答:(1)证明:∵∠A=∠A′,AC=A′C,∠ACM=∠A'CN=90°-∠MCN,
∴△ACM≌△A'CN.

(2)解:在Rt△ABC中
∵∠B=30°,∴∠A=90°-30°=60°.
又∵∠α=30°,∴∠MCN=30°,
∴∠ACM=90°-∠MCN=60°.
∴∠EMB′=∠AMC=∠A=∠MCA=60°.
∵∠B′=∠B=30°,
所以三角形MEB′是Rt△MEB′,且∠B′=30°.
所以MB′=2ME.
点评:本题利用了全等三角形的判定和性质,旋转和对折后得到的图形和原来的图形全等的知识.
练习册系列答案
相关习题

科目:初中数学 来源:2011-2012学年北京市房山区九年级(上)期末数学试卷(解析版) 题型:解答题

已知抛物线y=-x2+bx+c的对称轴为直线x=1,最大值为3,此抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.
(1)求抛物线的解析式.
(2)如图1.求点A的坐标及线段OC的长;
(3)点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.
①若含45°角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一 个顶点E在PQ上.求直线BQ的函数解析式;
②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上(D不与Q重合).另一个顶点E在PQ上,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年北京市通州区九年级(上)期中数学试卷(解析版) 题型:解答题

将两块大小一样含30°角的直角三角板叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,AC与BD相交于点E,连接CD.

(1)如图①,若以AB所在直线为x轴,过A垂直于AB的直线为y轴建立平面直角坐标系,请你求出过A、B、C、D四点的抛物线的解析式;
(2)如图②,保持△ABD不动,将△ABC向x轴的正方向平移到△FGH的位置,FH与BD相交于点P,设AF=x,△FBP面积为y,求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2012年河南省郑州市中考数学考前五套题(一)(解析版) 题型:解答题

抛物线y=-(x-1)2+3与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.
(1)如图1.求点A的坐标及线段OC的长;
(2)点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.
①若含45°角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上.求直线BQ的函数解析式;
②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上,另一个顶点E在PQ上,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2011年浙江省宁波市南三县中考适应性考试数学试卷(解析版) 题型:解答题

如图,将一块含30°角的学生用三角尺放在平面直角坐标系中,使顶点A,C分别放置在y轴,x轴上,已知AC=2,∠ACO=∠ABC=30°.
(1)求点A,B,C的坐标;
(2)求经过A,B两点的直线的解析式.

查看答案和解析>>

科目:初中数学 来源:2010年湖北省武汉市中考数学模拟试卷(4)(解析版) 题型:解答题

如图,在平面直角坐标系中,将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边重合于OA,直角边不重合,已知A(6,0),AB=OC,AC与OB交于点D,连接BC.
(1)填空,如图1,D点坐标是______

查看答案和解析>>

同步练习册答案