【题目】如图,在中,、的平分线相交于点O
若,求的度数;
若,则 ______ ;
若,则 ______ ;
如图,在中的外角平分线相交于点,,求的度数;
上面,两题中的与有怎样的数量关系?
【答案】(1)(a)120°; (b) 90°+n°;(c)36°; (2)36°;(3) ∠B′O′C′=180°-∠BOC.
【解析】
(1)(2)根据三角形内角和定理和角平分线定义解答;(3)由前两问提供的思路,进一步推理.
(1)(a)∵∠ABC、∠ACB的平分线相交于点O,
∴∠1=∠ABC,∠2=∠ACB,
∴∠1+∠2=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,
∴∠BOC=180°-60°=120°;
(b)方法同(a)可得:90°+n°;
(c) 由(a)、(b)结论知:∠BOC= 90°+∠A,又因为,
∴ 90°+∠A=3∠A,解得:∠A= 36°;
(2)∵∠A'=40°,
∴∠A'的外角等于180°-40°=140°,
∵△A′B′C′另外的两外角平分线相交于点O′,三角形的外角和等于360°,
∴∠1+∠2=×(360°-140°)=110°,
∴∠B′O′C′=180°-110°=70°;
(3)∵由(1)知,∠BOC=,由(2)知,∠B′O′C′=180°-,
∴∠B′O′C′=180°-∠BOC.
科目:初中数学 来源: 题型:
【题目】某产品的进价为元,该产品的日销量(件)是日销价(元)的反比例函数,且当售价为每件元时,每日可售出件,为获得日利润为元,售价应定为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与轴的交点分别为,.
求证:抛物线总与轴有两个不同的交点;
若,求此抛物线的解析式.
已知轴上两点,,若抛物线与线段有交点,请写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一批名牌衬衫,平均每天可售出件,每件盈利元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价元,商场平均每天可多售出件,若商场平均每天要盈利元,每件衬衫应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是等边三角形ABC内一点,且PA=3,PB=4, PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂设门市部专卖某产品,该产品每件成本元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:
每件销售价(元) | … | ||||||
每天售出件数 | … |
假设当天定的售价是不变的,且每天销售情况均服从这种规律.
观察这些统计数据,找出每天售出件数与每件售价(元)之间的函数关系,并写出该函数关系式.
门市部原设有两名营业员,但当销售量较大时,在每天售出量超过件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为元.求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A,B分别在坐标轴上.
(1)如图1,若点C的横坐标为5,直接写出点B的坐标 ;
(2)如图2,若点A的坐标为(-6,0),点B在y轴的正半轴上运动时,分别以OB,AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值;若变化,求PB的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线AB交轴于A(2,0),交轴负半轴于B(0,-10),C为x轴正半轴上一点,且OC=5OA.
(1)求△ABC的面积.
(2)延长BA到P(自己补全图形),使得PA=AB,过点P作PM⊥OC于M,求P点的坐标.
(3)如图,D是第三象限内一动点,直线BE⊥CD于E, OF⊥OD交BE延长线于F.当D点运动时,的大小是否发生变化?若改变,请说明理由;若不变,求出这个比值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,若点从点出发,以每秒1 cm的速度沿折线运动,设运动时间为秒(>0).
(1)若点在上,且满足,求此时的值;
(2)若点恰好在的角平分线上,求此时的值;
(3)在运动过程中,当为何值时,为等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com