【题目】如图,O是直线AB上的一点,OC⊥OD,垂足为O.
(1)若∠BOD=32°,求∠AOC的度数;
(2)若∠AOC:∠BOD=2:1,直接写出∠BOD的度数.
【答案】
(1)
解:∵OC⊥OD
∴∠COD=90°
∵∠AOB是平角
∴∠AOB=180°
∵∠BOD=32°
∴∠AOC=180°-∠BOD-∠COD=58°
(2)
解:设∠BOD=x,则∠AOC=2x,
∴x+2x+90°=180°,
∴x=30°,
即∠BOD=30°.
【解析】(1)根据OC⊥OD可得∠COD=90°,再由∠AOB为平角,∠BOD=32°即可求得∠AOC的度数;
(2)设∠BOD=x,则∠AOC=2x,根据平角的定义列方程x+2x+90°=180°,求解即可.
【考点精析】本题主要考查了角的运算和垂线的性质的相关知识点,需要掌握角之间可以进行加减运算;一个角可以用其他角的和或差来表示;垂线的性质:1、过一点有且只有一条直线与己知直线垂直.2、垂线段最短才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.
(1)求证:四边形BDEF是菱形;
(2)若AB=12cm,求菱形BDEF的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠ABC的平分线交CD于点E.
(1)若∠A=70°,求∠ABE的度数;
(2)若AB∥CD,且∠1=∠2,判断DF和BE是否平行,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于抛物线y=﹣(x+1)2+3,下列结论:其中正确结论的个数为( )
①抛物线的开口向下; ②对称轴为直线x=1; ③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知O为四边形ABCD对角线的交点,下列条件能使四边形ABCD成为矩形的是( )
A. OA=OC,OB=OD B. AC=BD C. AC⊥BD D. ∠ABC=∠BCD=∠CDA=90°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com