分析 两式相减得到6xy+x+y=2即x+y=2-6xy,代入式变形得到(x+y)2+xy+2(x+y)=8,解得xy=0或$\frac{35}{36}$,当xy=0时,得到$\left\{\begin{array}{l}{xy=0}\\{x+y=2-6xy}\end{array}\right.$,当xy=$\frac{35}{36}$时,得$\left\{\begin{array}{l}{xy=\frac{35}{36}}\\{x+y=2-6xy}\end{array}\right.$,再分别解方程组即可求解.
解答 解:$\left\{\begin{array}{l}{{x}^{2}+3xy+{y}^{2}+2x+2y=8①}\\{2{x}^{2}+2{y}^{2}+3x+3y=14②}\end{array}\right.$
①×2-②得:6xy+x+y=2即x+y=2-6xy③,
由①得:(x+y)2+xy+2(x+y)=8④
把x+y=2-6xy代入④得:(2-6xy)2+xy+2(2-6xy)=8,
整理得:36x2y2-35xy=0,
解得:xy=0或$\frac{35}{36}$,
当xy=0时,则$\left\{\begin{array}{l}{xy=0}\\{x+y=2-6xy}\end{array}\right.$
解得$\left\{\begin{array}{l}{{x}_{1}=2}\\{{y}_{1}=0}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=0}\\{{y}_{2}=2}\end{array}\right.$,
当xy=$\frac{35}{36}$时,则$\left\{\begin{array}{l}{xy=\frac{35}{36}}\\{x+y=2-6xy}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{x}_{3}=\frac{23+\sqrt{389}}{12}}\\{{y}_{3}=\frac{23-\sqrt{389}}{12}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{4}=\frac{23-\sqrt{389}}{12}}\\{{y}_{4}=\frac{23+\sqrt{389}}{12}}\end{array}\right.$.
点评 本题考查了高次方程,二元方程组无论多复杂,解二元方程组的基本思想都是消元,消元的方法有代入法和加减法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com