精英家教网 > 初中数学 > 题目详情

已知关于的函数的图像与坐标轴只有2个交点,求的值.


解:分情况讨论:

(ⅰ)时,得.

此时与坐标轴有两个交点,符合题意. ……………………………1分

(ⅱ)时,得到一个二次函数.

①     抛物线与x轴只有一个交点,…………………1分

解得…………………………………………………………2分

     ② 抛物线与x轴有两个交点,其中一个交点是(0,0)…………………1分

        把(0,0)带入函数解析式,易得………………………………1分


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


图1,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,EAB的中点,连结CE并延长交ADF.

1)求证:① AEF≌△BEC;② 四边形BCFD是平行四边形;

(2)如图2,将四边形ACBD折叠,使DC重合,HK为折痕,求sinACH的值.

                             

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,将边长为的等边△ABC折叠,折痕为DE,点B与点F重合,EFDF分别交于点MNDFAB,垂足为DAD=1,则重叠部分的面积为          .

查看答案和解析>>

科目:初中数学 来源: 题型:


函数中自变量x的取值范围是(   )

A.x≤3            B.x=4            C. x<3且x≠4     D.x≤3且x≠4

查看答案和解析>>

科目:初中数学 来源: 题型:


查看答案和解析>>

科目:初中数学 来源: 题型:


某公司有型产品40件,型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:

型利润

型利润

甲店

200

170

乙店

160

150

(1)设分配给甲店型产品件,这家公司卖出这100件产品的总利润为(元),求关于的函数关系式,并求出的取值范围;

(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;

(3)为了促销,公司决定仅对甲店型产品让利销售,每件让利元,但让利后型产品的每件利润仍高于甲店型产品的每件利润.甲店的型产品以及乙店的型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?

查看答案和解析>>

科目:初中数学 来源: 题型:


将某图中的横坐标都减去2,纵坐标不变,则该图形(    )

A. 向上平移2个单位      B. 向下平移2个单位          

C. 向右平移2个单位      D. 向左平移2个单位

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,△ABC中,分别延长△ABC的边AB、AC到D、E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:

(1)若∠A=50°,则∠P=          °;

(2)若∠A=90°,则∠P=          °;

(3)若∠A=100°,则∠P=         °;

(4)请你用数学表达式归纳∠A与∠P的关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,点D、E在△ABC的边BC上,AD=AE,AB=AC,求证:BD=EC。(7分)

查看答案和解析>>

同步练习册答案