精英家教网 > 初中数学 > 题目详情
19、如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,试说明:AD平分∠BAC.
答:∵AD⊥BC,EG⊥BC
∴AD∥EG(
同垂直于一条直线的两直线平行

∴∠1=∠E(
两直线平行,同位角相等

∠2=∠3(
两直线平行,内错角相等
 )
又∵∠3=∠E
∴∠1=∠2
∴AD平分∠BAC(
角平分线定义
分析:先由AD⊥BC,EG⊥BC推出AD∥EG,相继推出∠1=∠E,∠2=∠3,等量代换得∠1=∠2,所以得出AD平分∠BAC.
解答:解:∵AD⊥BC,EG⊥BC
∴AD∥EG(同垂直于一条直线的两直线平行)
∴∠1=∠E(两直线平行,同位角相等)
∠2=∠3(两直线平行,内错角相等)
又∵∠3=∠E
∴∠1=∠2
∴AD平分∠BAC(角平分线定义)
故答案分别为:同垂直于一条直线的两直线平行,两直线平行、同位角相等,两直线平行、内错角相等,角平分线定义.
点评:此题考查的知识点是平行线的判定与性质,解题的关键是先判定AD∥EG,再由平行线的性质加上等量代换推出∠1=∠2.即AD平分∠BAC.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,AD⊥BC于D,DE∥AC,则∠C与∠ADE之和为
90
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.
求证:AD平分∠BAC,填写分析和证明中的空白.
分析:要证明AD平分∠BAC,只要证明
∠BAD
=
∠CAD

而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC的两条垂线可推出
EF
AD
,这时再观察这两对角的关系已不难得到结论.
证明:∵AD⊥BC,EF⊥BC(已知)
EF
AD
在同一平面内,垂直与同一直线的两直线平行

∠1
=
∠BAD
(两直线平行,内错角相等),
∠2
=
∠CAD
(两直线平行,同位角相等)
∠1=∠2
(已知)
∠BAD=∠CAD
,即AD平分∠BAC(
角平分线的定义

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,AD⊥BC于D,EF⊥BC于F,且∠E=∠1,求证∠BAD=∠CAD.
证明:∵AD⊥BC,EF⊥BC,
∴∠EFD=∠ADC=90°(垂线的定义)
EF
AD
(同位角相等,两直线平行)
∴∠BAD=∠1(
两直线平行,内错角相等
),
∠CAD=∠E(
两直线平行,同位角相等

又∵∠E=∠1(已知)
∴∠BAD=∠CAD

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,AD⊥BC于D,EF⊥BC于E,∠1=∠2,AB与DG平行吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•义乌市)如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=
70°
70°

查看答案和解析>>

同步练习册答案