分析 由等腰三角形的三线合一性质得出AD⊥BC,BD=CD,∠ADC=90°,由平行四边形的性质得出AE∥BD,AE=BD,得出AE∥CD,AE=CD,证出四边形ADCE是平行四边形,即可得出结论.
解答 证明:∵AB=AC,D为BC边的中点,
∴AD⊥BC,BD=CD,
∴∠ADC=90°,
∵四边形ABDE是平行四边形,
∴AE∥BD,AE=BD,
∴AE∥CD,AE=CD,
∴四边形ADCE是平行四边形,
又∵∠ADC=90°,
∴四边形ADCE是矩形.
点评 本题考查了等腰三角形的性质、平行四边形的判定与性质、矩形的判定;熟练掌握等腰三角形的性质和平行四边形的判定与性质,并能进行推理论证是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com