精英家教网 > 初中数学 > 题目详情
4.将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则此圆锥的底面画圆的半径为1cm.

分析 先利用扇形的面积公式计算出扇形的半径为4,再设圆锥的底面半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和扇形面积公式得到$\frac{1}{2}$•2πr•4=4π,然后解此方程即可.

解答 解:设扇形的半径为R,则
$\frac{90π×{R}^{2}}{360}$=4π,
解得R=4,
设圆锥的底面半径为r,
根据题意得$\frac{1}{2}$•2πr•4=4π,
解得r=1,
即圆锥的底面半径为1.
故答案为:1.

点评 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.解不等式2(2x-3)<5(x-1),并把它的解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.剪纸,又叫刻纸,是一种镂空艺术,是中国汉族最古老的民间艺术之一,它在视觉上给人以透空的感觉和艺术享受,它较多地利用了图形的轴对称的性质,以下几个剪纸图案是轴对称图形但不是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知,一次函数y=x与二次函数y=x2+bx+c的图象相交于原点O 和点A(4,4)两点.
(1)求二次函数表达式;
(2)直线x=m和x=m+2分别交线段AO于C、D,交二次函数y=x2+bx+c的图象于点E、F,当m为何值时,四边形CEFD是平行四边形;
(3)在第(2)题的条件下,设CE与x轴的交点为M,将△COM绕点O顺时针旋转得到△C′OM′,当C′、M′、F三点第一次共线时,求线段C′D的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)计算:(x+3)(x-3)-x(x-2)
(2)解不等式组:$\left\{\begin{array}{l}{x-7<4x+2}\\{5-2x<15-4x}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,E是?ABCD的边AD上任一点,若△EBC的面积为16,则?ABCD的面积为32.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.在正方形ABCD中,E在BC上,BE=2,CE=1,P在BD上,则PE和PC的长度之和最小可达到$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若将30°、45°、60°的三角函数值填入表中,则从表中任意取一个值,是$\frac{{\sqrt{2}}}{2}$的概率为(  )
α30°45°60°
sinα
cosα
tanα
A.$\frac{1}{3}$B.$\frac{1}{9}$C.$\frac{2}{3}$D.$\frac{2}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC并延长,交切线BD于点D,连接OC.若∠BOC=100°,则∠D=40度.

查看答案和解析>>

同步练习册答案