精英家教网 > 初中数学 > 题目详情

(2013年四川绵阳14分)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:

(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:
(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;
(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,SAGH分别表示四边形BCHG和△AGH的面积,试探究的最大值.

解:(1)证明:如答图1所示,连接CO并延长,交AB于点E,

∵点O是△ABC的重心,∴CE是中线,点E是AB的中点。
∴DE是中位线。∴DE∥AC,且DE=AC。
∵DE∥AC,∴△AOC∽△DOE。

∵AD=AO+OD,

(2)答:点O是△ABC的重心。证明如下:
如答图2,作△ABC的中线CE,与AD交于点Q,

则点Q为△ABC的重心。
由(1)可知,  ,

∴点Q与点O重合(是同一个点)。
∴点O是△ABC的重心。
(3)如答图3所示,连接DG.

设SGOD=S,由(1)知,即OA=2OD,
∴SAOG=2S,SAGD=SGOD+SAGO=3S。
为简便起见,不妨设AG=1,BG=x,则SBGD=3xS.
∴SABD=SAGD+SBGD=3S+3xS=(3x+3)S。
∴SABC=2SABD=(6x+6)S。
设OH=k•OG,由SAGO=2S,得SAOH=2kS,
∴SAGH=SAGO+SAOH=(2k+2)S。
∴S四边形BCHG=SABC﹣SAGH=(6x+6)S﹣(2k+2)S=(6x﹣2k+4)S。
 ①。
如答图3,过点O作OF∥BC交AC于点F,过点G作GE∥BC交AC于点E,则OF∥GE。
∵OF∥BC,∴。∴OF=CD=BC。
∵GE∥BC,∴。∴
,∴
∵OF∥GE,∴。∴,即
,代入①式得:

∴当x=时,有最大值,最大值为

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.

(1)求证:△ABF∽△DFE
(2)若△BEF也与△ABF相似,请求出的值 .

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.

(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD·AB;
(3)若⊙O的半径为2,∠ACD=300,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,点P是△ABC的外角∠BCN的角平分线上一个动点,点P′是点P关于直线BC的对称点,连结PP′交BC于点M,BP′交AC于D,连结BP、AP′、CP′.

(1)若四边形BPCP′为菱形,求BM的长;
(2)若△BMP′∽△ABC,求BM的长;
(3)若△ABD为等腰三角形,求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在等腰梯形ABCD中,DC∥AB,E是DC延长线上的点,连接AE,交BC于点F。

(1)求证:△ABF∽△ECF
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的长。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8。P是AC上的一个动点,当P在AC上运动时,设PC=x,△ABP 的面积为y.
(1)求AC边上的高是多少?
(2)求y与x之间的关系式。

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是

A.5 B.12 C.6 D.7

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,一个简单几何体的三视图的主视图与左视图都为正三角形,其俯视图为正方形,则这个几何体是(  )

A.四棱锥 B.正方体 C.四棱柱 D.三棱锥

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

下列几何体中,主视图是矩形,俯视图是圆的几何体是

A. B. C. D.

查看答案和解析>>

同步练习册答案