精英家教网 > 初中数学 > 题目详情
7.已知△ABC为等边三角形,延长BC到M,CA到N,使CM=AN,连BN交MA的延长线于Q,求∠BQM.

分析 由△ABC为等边三角形,易得AB=BC,∠ABC=∠ACB=60°,又由BM=CN,即可证得△ABM≌△BCN,然后由全等三角形的对应角相等,求得答案.

解答 解:∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠ACB=60°,
在△ABM和△BCN中,
∵$\left\{\begin{array}{l}AB=BC\\∠ABM=∠ACB\\ BM=CN\end{array}\right.$,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∴∠CBN+∠AMB=∠BAM+∠AMB=180°-∠ABC=120°,
∴∠BQM=180°-(∠CBN+∠AMB)=60°.

点评 此题考查了全等三角形的判定与性质以及等边三角形的性质.解题的关键是利用SAS证得△ABM≌△BCN.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,顺次连接正方形ABCD各边的中点得到四边形EFGH,如果正方形ABCD的面积为64cm2,估计四边形EFGH的每条边的长.(精确到0.01cm)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图1,在四边形ABCD中,∠D=60°,点P,Q同时从点D出发,以每秒1个单位长度的速度分别沿D→A→B→C和D→C→B方向运动至相遇时停止,连接PQ.设点P运动的路程为x,PQ的长y,y与x之间满足的函数关系的图象如图2,则下列说法中不正确的是(  )
A.AB∥CDB.AB=8
C.S四边形ABCD=$\frac{161\sqrt{3}}{4}$D.∠B=135°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在△ABC和△DCB中,∠1=∠2,∠3=∠4,P是BC上任意一点.
(1)求证:PA=PD;
(2)若点P改为BC延长线上任意一点,结论还成立吗?为什么?
(3)若P点是AD与BC的交点,我们还能得到什么新的结论?直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,AB=AC,BD=CD,则∠B=∠C,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某省会城市2008年的污水处理量为10万吨/天,2009年的污水处理量为33万吨/天,2009年平均每天的污水排放量是2008年平均每天污水排放量的1.1倍,若2009年每天的污水处理率比2008年每天的污水处理率提高40%(污水处理率=污水处理量/污水排放量)
(1)求该市2008年、2009年平均每天的污水排放量分别是多少?(结果保留整数)
(2)预计该市2010年平均每天的污水排放量比2009年平均每天污水排放量增加20%,按照国家要求“2010年省会城市的污水处理率不低于70%“,那么该市2010年每天污水处理量在2009年每天污水处理量的基础上至少还需要增加多少万吨,才能符合国家规定的要求?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,∠AOB=60°,其内部的点M到OA的距离MF=1,到OB的距离ME=2,求线段OM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.化简
(1)5(3a2-b-ab2)-3(ab2+5a2b)
(2)(2x2+x)-[4x2-(32-x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.二次函数过点(0,5),(-1,0),对称轴为x=2,求解析式.

查看答案和解析>>

同步练习册答案