精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.
(1)求这条抛物线所对应的函数关系式.
(2)求点C在这条抛物线上时m的值.
(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.
(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
))
(1)∵抛物线经过点A(-1,0)、B(4,0),
a-b-2=0
16a+4b-2=0.

解得
a=
1
2
b=-
3
2
.

∴抛物线所对应的函数关系式为y=
1
2
x2-
3
2
x-2;

(2)∵△CMN是等腰直角三角形CMN,∠CMN=90°,
∴CM=MN=2,
∴点C的坐标为(m,2),
∵点C(m,2)在抛物线上,
1
2
m2-
3
2
m-2=2,
解得m1=
3+
41
2
,m2=
3-
41
2

∴点C在这条抛物线上时,m的值为
3+
41
2
3-
41
2


(3)①∵将线段CN绕点N逆时针旋转90°后,得到对应线段DN,
∴∠CND=90°,DN=CN=
2
CM=
2
MN,
∴CD=
2
CN=2CM=2MN,
∴DM=CM=MN,∠DMN=90°,
∴点D的坐标为(m,-2).
又∵抛物线y=
1
2
x2-
3
2
x-2的对称轴为直线x=
3
2
,点D在这条抛物线的对称轴上,
∴点D的坐标为(
3
2
,-2);

②如图,以DN为直角边作等腰直角三角形DNE,E点的位置有四种情况:
如果E点在E1的位置时,
∵点D的坐标为(m,-2),MN=ME1=2,点N的坐标为(m+2,0),
∴点E1的(m-2,0),
∵点E1在抛物线y=
1
2
x2-
3
2
x-2的对称轴直线x=
3
2
上,
∴m-2=
3
2
,解得m=
7
2

如果E点在E2的位置时,
∵点D的坐标为(m,-2),点N的坐标为(m+2,0),
∴点E2的(m+2,-4),
∵点E2在抛物线y=
1
2
x2-
3
2
x-2的对称轴直线x=
3
2
上,
∴m+2=
3
2
,解得m=-
1
2

如果E点在E3的位置时,
∵点D的坐标为(m,-2),
∴点E3的(m,2),
∵点E3在抛物线y=
1
2
x2-
3
2
x-2的对称轴直线x=
3
2
上,
∴m=
3
2

如果E点在E4的位置时,
∵点D的坐标为(m,-2),点N的坐标为(m+2,0),
∴点E4的(m+4,-2),
∵点E4在抛物线y=
1
2
x2-
3
2
x-2的对称轴直线x=
3
2
上,
∴m+4=
3
2
,解得m=-
5
2

综上可知,当点E在这条抛物线的对称轴上时,所有符合条件的m的值为m=-
5
2
或m=-
1
2
或m=
3
2
或m=
7
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,已知抛物线交x轴于A、B两点,交y轴于点C(0,2),此抛物线的对称轴为直线x=2,点A的坐标为(1,0).
(1)求B点坐标以及△ABC的面积;
(2)求抛物线的解析式;
(3)过点C作x轴的平行线交此抛物线的对称轴于点D,你能判断四边形ABDC是什么四边形吗?并证明你的结论;
(4)若一个动点P自OC的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点C,求使点P运动的总路径(ME+EF+FC)最短的点E、F的坐标,并求出这个最短总路径的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-
1
3
x+2
与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).
(1)求a的值和抛物线的顶点坐标;
(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;
(3)设N是抛物线对称轴上的一个动点,d=|AN-CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的三分之一,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a≠0)交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为直线x=-1,B(1,0),C(0,-3).
(1)求二次函数y=ax2+bx+c(a≠0)的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到A、C两点距离之差最大?若存在,求出点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场将每件进价为60元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加20件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润7000元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于7000元.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

崇启大桥使启东市融入了上海一小时经济区,为启东经济的腾飞打下了坚实的基础,建成的大桥将是世界上最长的斜拉索大桥,如图,桥梁的两条钢缆具有相同的抛物线形状,建立如图所示的直角坐标系,左边的一条抛物线可以用y=0.0225x2+0.9x+10表示,而且左右两条抛物线关于y轴对称.
(1)钢缆最低点到桥面的距离是多少?
(2)两条钢缆的最低点之间的距离是多少?
(3)写出右边钢缆的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店购进一批单价为20元的日用商品,如果以单价30元销售那么半月内可售出400件,根据销售经验,推广销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.
(1)销售单价提高多少元,可获利4480元.
(2)如何提高售价,才能在半月内获得最大利润?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,根据图形写出一个符合图象的二次函数表达式:______.

查看答案和解析>>

同步练习册答案