精英家教网 > 初中数学 > 题目详情

抛物线y=ax2-4ax+b经过A(1,0),F(4,-3),与y轴交于点C,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点P,连接PC,将线段PC绕着P点逆时针旋转90°至线段PC1,使得C1落在抛物线上?若存在,求点P的坐标;若不存在,请说明理由;
(3)点D是抛物线在x轴上方部分的一点,过D作DE∥AC与y轴交于E,且四边形ACED是等腰梯形,求出D的坐标.

解:(1)把A(1,0),F(4,-3)代入y=ax2-4ax+b中,

解得
∴y=-x2+4x-3;

(2)如图1,设P(2,t),
分别过C、C′作对称轴的垂线,垂足为G、H,
∵PC=PC′,∠CPC′=90°,由互余关系可证△PCG≌△C′PH,
∴PH=CG=2,HC′=PG=t+3,
则C1(t+5,t-2),代入y=-x2+4x-3中,得
t-2=-(t+5)2+4(t+5)-3,
解得t=-1或t=-6(不合题意,舍掉),
∴P(2,-1);

(3)如图2,延长DA交y轴于点M,依题意,
∠CED=∠ADE,MD=ME,则MA=MC,
在Rt△AOM中,OM2+OA2=AM2,即OM2+12=(3-OM)2
解得OM=
∴直线DA的解析式是y=x-
联立
解得
∴D(

分析:(1)将A、F两点坐标代入抛物线解析式可求a、b的值,确定抛物线解析式;
(2)由(1)可知,抛物线对称轴为x=2,设P(2,t)利用垂直关系构造两个三角形全等,可得C1(t+5,t-2),将C1点坐标代入抛物线解析式求t即可;
(3)延长DA交y轴于点M,由等腰梯形构造等腰三角形,可得MA=MC,在Rt△AOM中,由勾股定理求OM,根据A、M两点坐标求直线AD解析式,与抛物线解析式联立,求D点坐标.
点评:本题考查了二次函数的综合运用.关键是根据已知条件求抛物线解析式,由互余关系,旋转的性质构造全等三角形,由等腰梯形构造等腰三角形,体现了转化的思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知点(2,8)在抛物线y=ax2上,则a的值为(  )
A、±2
B、±2
2
C、2
D、-2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,以A(3,0)为圆心,以5为半径的圆与x轴相交于B、C,与y轴的负半轴相交于D.
(1)若抛物线y=ax2+bx+c经过B、C、D三点,求此抛物线的解析式,并写出抛物线与圆A的另一个交点E的坐标;
(2)若动直线MN(MN∥x轴)从点D开始,以每秒1个长度单位的速度沿y轴的正方向移动,且与线段CD、y轴分别交于M、N两点,动点P同时从点C出发,在线段OC上以每秒2个长度单位的速度向原点O运动,连接PM,设运动时间为t秒,当t为何值时,
MN•OPMN+OP
的值最大,并求出最大值;
(3)在(2)的条件下,若以P、C、M为顶点的三角形与△OCD相似,求实数t的值.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

若(2,0)、(4,0)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是直线(  )
A、x=0B、x=1C、x=2D、x=3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内,O为原点,抛物线y=ax2+bx经过点A(6,0),且顶点B(m,6)在直线y=2x上.
(1)求m的值和抛物线y=ax2+bx的解析式;
(2)如在线段OB上有一点C,满足OC=2CB,在x轴上有一点D(10,0),连接DC,且直线DC与y轴交于点E.
①求直线DC的解析式;
②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是
等腰
等腰
三角形;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.

查看答案和解析>>

同步练习册答案