6£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßy=-x2+bx+cÓëxÖá½»ÓÚA¡¢BÁ½µã£¨µãAÔÚµãBµÄ×ó²à£©£¬ÓëyÖá½»ÓÚµãC£¬µãBµÄ×ø±êΪ£¨3£¬0£©£¬Ö±Ïßy=kx-3¾­¹ýB¡¢CÁ½µã£®
£¨1£©ÇókµÄÖµ¼ÈÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©Èç¹ûPÊÇÏ߶ÎBCÉÏÒ»µã£¬Éè¡÷ABP¡¢¡÷APCµÄÃæ»ý·Ö±ðΪS¡÷ABP¡¢S¡÷APC£¬ÇÒS¡÷ABP£ºS¡÷APC=2£º3£¬ÇóµãPµÄ×ø±ê£»
£¨3£©Éè¡ÑQµÄ°ë¾¶Îª1£¬Ô²ÐÄQÔÚÅ×ÎïÏßÉÏÔ˶¯£¬ÔòÔÚÔ˶¯¹ý³ÌÖÐÊÇ·ñ´æÔÚ¡ÑOÓë×ø±êÖáÏàÇеÄÇé¿ö£¿Èô´æÔÚ£¬Çó³öÔ²ÐÄQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£¬²¢Ì½¾¿£ºÈôÉè¡ÑQµÄ°ë¾¶Îªr£¬Ô²ÐÄQÔÚÅ×ÎïÏßÉÏÔ˶¯£¬Ôòµ±rÈ¡ºÎֵʱ£¬¡ÑQÓëÁ½×ø±êÖáͬʱÏàÇУ¿

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝÃæ»ýµÄ±È£¬¿ÉµÃPB£ºPCµÄÖµ£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬¿ÉµÃPDµÄ³¤£¬¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹Øϵ£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾ÝÔ²Óë×ø±êÖáÏàÇУ¬¿ÉµÃx»òyµÄÖµ£¬ÔÙ¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹Øϵ£¬¿ÉµÃQµã×ø±ê£®

½â´ð ½â£º£¨1£©½«Bµã×ø±ê´úÈëy=kx-3£¬µÃ
3k-3=0£¬½âµÃk=1£»
Ö±ÏߵĽâÎöʽΪy=x-3£¬µ±x=0ʱ£¬y=-3£¬¼´Cµã×ø±êΪ£¨0£¬-3£©£¬
½«B¡¢Cµã×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ£¬½âµÃb=4£¬c=-3£¬
Å×ÎïÏߵĽâÎöʽΪy=-x2+4x-3£»
£¨2£©×÷PD¡ÍABÓÚDµã£¬Èçͼ£º

ÓÉS¡÷ABP£ºS¡÷APC=2£º3£¬µÃPB£ºPC=2£º3£¬PB£ºBC=2£º5£®
ÓÉ¡÷PBD¡×¡÷COB£¬µÃ$\frac{PD}{OC}$=$\frac{PB}{BC}$£¬½âµÃDP=$\frac{6}{5}$£¬
½âµÃPµãµÄ×Ý×ø±êΪ-$\frac{6}{5}$£¬
µ±y=-$\frac{6}{5}$ʱ£¬x-3=-$\frac{6}{5}$£¬½âµÃx=$\frac{9}{5}$£¬
µÃPµãµÄ×Ý×ø±êΪ£¨$\frac{9}{5}$£¬-$\frac{6}{5}$£©£»
£¨3£©ÉèQ£¨x£¬y£©£¬
¢Ùµ±¡ÑQÓëyÖáÏàÇÐʱ£¬ÓÐ|x|=1£¬¼´x=¡À1£®
µ±x=1ʱ£¬y=-x2+4x-3=0£¬¼´QµãµÄ×ø±êΪ£¨1£¬0£©£¬
µ±x=-1ʱ£¬y=-x2+4x-3=-8£¬µÃQµãµÄ×ø±êΪ£¨-1£¬8£©£»
¢Úµ±¡ÑQÓëxÖáÏàÇÐʱ£¬ÓÐ|y|=1£¬¼´y=¡À1£®
µ±y=1ʱ£¬1=-x2+4x-3£¬½âµÃx=2£¬¼´QµãµÄ×ø±êΪ£¨2£¬1£©£»
µ±y=-1ʱ£¬-1=-x2+4x-3£¬½âµÃx=2$¡À\sqrt{2}$£¬¼´Q£¨2+$\sqrt{2}$£¬-1£©£¬£¨2-$\sqrt{2}$£¬-1£©£¬
×ÛÉÏËùÊö£º´æÔÚ¡ÑQÓë×ø±êÖáÏàÇУ¬Ô²ÐÄQµÄ×ø±êΪ£¨1£¬0£©£¬£¨-1£¬8£©£¬£¨2+$\sqrt{2}$£¬-1£©£¬£¨2-$\sqrt{2}$£¬-1£©£»
¢Ûµ±¡ÑQÓëÁ½×ø±êÖáͬʱÏàÇÐʱ£¬ÓÐ|x|=|y|£®
µ±y=xʱ£¬-x2+4x-3=x£¬´Ë·½³ÌÎ޽⣻
µ±y=-xʱ£¬-x2+4x-3=-x£¬½âµÃx=$\frac{5¡À\sqrt{13}}{2}$£¬µ±r=$\frac{5¡À\sqrt{13}}{2}$ʱ£¬¡ÑQÓëÁ½×ø±êÖáͬʱÏàÇУ¬
×ÛÉÏËùÊö£ºµ±r=$\frac{5¡À\sqrt{13}}{2}$ʱ£¬¡ÑQÓëÁ½×ø±êÖáͬʱÏàÇУ®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÀûÓÃÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖʵóöPDµÄ³¤ÊǽâÌâ¹Ø¼ü£»ÀûÓÃÔ²Óë×ø±êÖáÏàÇеóöx»òyµÄÖµÊǽâÌâ¹Ø¼ü£¬Òª·ÖÀàÌÖÂÛ£¬ÒÔ·ÀÒÅ©£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÊýÖáÉÏÈýµãA£¬O£¬B±íʾµÄÊý·Ö±ðΪ-3£¬0£¬1£¬µãPΪÊýÖáÉÏÈÎÒâÒ»µã£¬Æä±íʾµÄÊýΪx£®
£¨1£©Èç¹ûµãPµ½µãA£¬µãBµÄ¾àÀëÏàµÈ£¬ÄÇôx=-1£»
£¨2£©µ±x=-4»ò2ʱ£¬µãPµ½µãA£¬µãBµÄ¾àÀëÖ®ºÍÊÇ6£»
£¨3£©ÈôµãPµ½µãA£¬µãBµÄ¾àÀëÖ®ºÍ×îС£¬ÔòxµÄÈ¡Öµ·¶Î§ÊÇ-3¡Üx¡Ü1£»
£¨4£©ÔÚÊýÖáÉÏ£¬µãM£¬N±íʾµÄÊý·Ö±ðΪx1£¬x2£¬ÎÒÃÇ°Ñx1£¬x2Ö®²îµÄ¾ø¶ÔÖµ½Ð×öµãM£¬NÖ®¼äµÄ¾àÀ룬¼´MN=|x1-x2|£®ÈôµãPÒÔÿÃë3¸öµ¥Î»³¤¶ÈµÄËٶȴӵãOÑØ×ÅÊýÖáµÄ¸º·½ÏòÔ˶¯Ê±£¬µãEÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËٶȴӵãAÑØ×ÅÊýÖáµÄ¸º·½ÏòÔ˶¯¡¢µãFÒÔÿÃë4¸öµ¥Î»³¤¶ÈµÄËٶȴӵãBÑØ×ÅÊýÖáµÄ¸º·½ÏòÔ˶¯£¬ÇÒÈý¸öµãͬʱ³ö·¢£¬ÄÇôÔ˶¯$\frac{4}{3}$»ò2Ãëʱ£¬µãPµ½µãE£¬µãFµÄ¾àÀëÏàµÈ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÔÚ¾ØÐÎABCDÖУ¬AB=5£¬BC=3£¬ÈçͼËùʾÕÛµþ¾ØÐÎABCD£¬Ê¹DµãÂäÔÚ±ßABÉÏÒ»µãE´¦£¬Õۺ۶˵ãG¡¢F·Ö±ðÔÚ±ßAD¡¢DCÉÏ£¬Ôòµ±Õۺ۶˵ãFÇ¡ºÃÓëCµãÖغÏʱ£¬AEµÄ³¤Îª1cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈçͼËùʾ£¬Rt¡÷ABCÖУ¬AC=BC=4£¬ADƽ·Ö¡ÏBAC£¬µãEÔÚ±ßABÉÏ£¬ÇÒAE=1£¬µãPÊÇÏ߶ÎADÉϵÄÒ»¸ö¶¯µã£¬ÔòPE+PBµÄ×îСֵµÈÓÚ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èç¹û¶àÏîʽx2-mx+16ÊÇÒ»¸öÍêȫƽ·½Ê½£¬ÔòmµÄÖµÊÇ£¨¡¡¡¡£©
A£®4B£®¡À4C£®8D£®¡À8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®50=05B£®|-5|=-5C£®6-1=$\frac{1}{6}$D£®$\sqrt{16}$=¡À4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÒÑÖª¡÷ABC£®
£¨1£©¹ýµãA×÷ADʹADƽ·Ö¡÷ABCµÄÃæ»ý£¬½»BCÓÚµãD£¨Óó߹æ×÷ͼ·¨£¬±£Áô×÷ͼºÛ¼££¬²»ÒªÇóд×÷·¨£©£»
£¨2£©ÔÚ£¨1£©Ìõ¼þÏ£¬Èô¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ¬¡ÏA=90¡ã£¬AB=4£¬AC=5£¬ÇóADµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èçͼ£¬ÔÚÊýÖáÉϱê×¢ÁËËĶη¶Î§£¬Ôò±íʾ$\sqrt{8}$µÄµãÂäÔÚ£¨¡¡¡¡£©
A£®¢Ù¶ÎB£®¢Ú¶ÎC£®¢Û¶ÎD£®¢Ü¶Î

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èôʽ×Ó$\sqrt{-2x+6}$ÓÐÒâÒ壬»¯¼ò£º|x-4|-|7-x|£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸