精英家教网 > 初中数学 > 题目详情
23、如图,△ABC内接于⊙O,点D在OC的延长线上,且∠B=∠CAD=30°,试判定AD与⊙O的位置关系,并说明理由.
分析:连接OA,由已知∠B=∠CAD=30°,所以得,∴∠AOC=60°,继而可得∠OAC=60°,又∠CAD=30°,∴∠OAD=90°,即得结论.
解答:解:AD是⊙O的切线.
连接OA,∵∠B=30°,∴∠AOC=60°,可得∠OAC=60°,
又∠CAD=30°,∴∠OAD=90°,

所以AD是⊙O的切线.
点评:此题考查的知识点是切线的判定,关键是由已知推出∠OAD=90°,得结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案