精英家教网 > 初中数学 > 题目详情

如图,AB为⊙O的直径,D为弦BE的中点,连接OD并延长交⊙O于点F,与过B点的切线相交于点C.若点E为数学公式的中点,连接AE.
求证:△ABE≌△OCB.

证明:如图.
∵AB是⊙O的直径,
∴∠E=90°,
又∵BC是⊙O的切线,∴∠OBC=90°.
∴∠E=∠OBC.
∵OD过圆心,BD=DE,

∴∠BOC=∠A,
∵E为中点,

连接OE,
∴∠AOE=60°,
∴∠ABE=30°.
∵∠E=90°,
∴AE=AB=OB.
∴△ABE≌△OCB.
分析:AB是圆的直径,我们可得出∠E为直角,BC切圆于B点,那么CB⊥AB,由此我们就得出了∠E=∠OBC=90°,D为弦BE的中点,根据垂径定理我们不难得出,弧EF=弧BF,又有弧AE=弧EF,那么弧AE=弧EF=弧BF,由此我们可得出∠ABE=30°以及∠BOC=∠A,在Rt△ABE中,AE=AB=OB,这样就达到了全等三角形判定里的角角边的条件.
点评:考查圆周角、圆心角、垂径定理、三角形全等的问题.命题者的意图是考查学生逻辑推理能力以及公理化的思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为(  )
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为
40m
40m

查看答案和解析>>

科目:初中数学 来源:江苏省张家港市2012年中考网上阅卷适应性考试数学试题 题型:013

如图,AB为⊙O的直甲径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中数学 来源:2008年福建省福州一中高中招生(面向福州以外)综合素质测试数学试卷(解析版) 题型:选择题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步练习册答案