精英家教网 > 初中数学 > 题目详情
(2008•邵阳)如图,正方形OA1B1C1的边长为1,以O为圆心、OA1为半径作扇形OA1C1与OB1相交于点B2,设正方形OA1B1C1与扇形OA1C1之间的阴影部分的面积为S1;然后以OB2为对角线作正方形OA2B2C2,又以O为圆心,OA2为半径作扇形OA2C2与OB1相交于点B3,设正方形OA2B2C2与扇形OA2C2之间的阴影部分面积为S2;按此规律继续作下去,设正方形OAnBnCn与扇形OAnCn之间的阴影部分面积为Sn
(1)求S1,S2,S3
(2)写出S2008
(3)试猜想Sn(用含n的代数式表示,n为正整数).

【答案】分析:根据阴影部分的面积是正方形的面积减去所对应的扇形的面积可求解,所以可分别计算出S1=1-π,S2=-,S3=-;那么Sn=-(n为正整数).可据此求出当n=2008时,S的值.
解答:解:
(1)
由勾股定理得:OA22+A2B22=OB22=12
∴OA2=



(2)S2008=-

(3)Sn=-(n为正整数).
点评:主要考查了正方形的性质和扇形的面积公式.本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《相交线与平行线》(02)(解析版) 题型:填空题

(2008•邵阳)如图,AB与CD相交于点O,OE⊥CD,∠BOE=54°,则∠AOC=    度.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2008•邵阳)如图,AB、CD是竖立在公路两侧,且架设了跨过公路的高压电线的电杆,AB=CD=16米.现在点A处观测电杆CD的视角为19°42′,视线AD与AB的夹角为59度.以点B为坐标原点,向右的水平方向为x轴的正方向,建立平面直角坐标系.
(1)求电杆AB、CD之间的距离和点D的坐标;
(2)在今年年初的冰雪灾害中,高压电线由于结冰下垂近似成抛物线y=x2+bx(b为常数).在通电情况,高压电线周围12米内为非安全区域.请问3.2米高的车辆从高压电线下方通过时,是否有危险,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年湖南省邵阳市中考数学试卷(解析版) 题型:解答题

(2008•邵阳)如图,将含30°角的直角三角板ABC(∠B=30°)绕其直角顶点A逆时针旋转α解(0°<α<90°),得到Rt△ADE,AD与BC相交于点M,过点M作MN∥DE交AE于点N,连接NC.设BC=4,BM=x,△MNC的面积为S△MNC,△ABC的面积为S△ABC
(1)求证:△MNC是直角三角形;
(2)试求用x表示S△MNC的函数关系式,并写出x的取值范围;
(3)以点N为圆心,NC为半径作⊙N,
①当直线AD与⊙N相切时,试探求S△MNC与S△ABC之间的关系;
②当S△MNC=S△ABC时,试判断直线AD与⊙N的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年湖南省邵阳市中考数学试卷(解析版) 题型:填空题

(2008•邵阳)如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,AB=5,AC=4,则BD=   

查看答案和解析>>

同步练习册答案