分析 (1)延长AD交BC于点F,根据线段垂直平分线的定义得到AC=CF,AD=DF,故可得出DE∥BC;
(2)根据AC=CF可得出BF=BC-CF=BC-AC,由三角形中位线定理即可得出结论.
解答 解:(1)延长AD交BC于点F,
∵CD平分∠ACB,且AD⊥AD,
∴AC=CF,AD=DF.
∵E是AB的中点,
∴DE是△ABF的中位线,
∴DE∥BC;
(2)∵由(1)知DE是△ABF的中位线,AC=CF,
∴DE=$\frac{1}{2}$BF=$\frac{1}{2}$(BC-CF)=$\frac{1}{2}$(BC-AC),
即2DE=BC-AC.
点评 本题考查的是三角形中位线定理,根据题意作出辅助线,利用三角形中位线定理求解是解答此题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com