精英家教网 > 初中数学 > 题目详情
9.如图所示,已知∠1=∠2,AC=AE,再添一个条件AB=AD或∠B=∠D或∠C=∠E,使△ABC≌△ADE.(只需写出一个即可)

分析 先根据∠1=∠2,等号两边都加上∠EAC,得到∠BAC=∠DAE,由已知AC=AE,要使△ABC≌△ADE,根据全等三角形的判定:添上AB=AD,根据有两边及夹角相等的两个三角形全等(简称SAS);添上∠B=∠D,根据有两角及其夹边对应相等的两个三角形全等(AAS);添上∠C=∠E,根据有两边及其夹角对应相等的两个三角形全等(ASA).

解答 解:可补充的条件是:
当AB=AD,△ABC≌△ADE(SAS);
当∠B=∠D,△ABC≌△ADE(ASA);
当∠C=∠E,△ABC≌△ADE(AAS).
故答案为:AB=AD或∠B=∠D或∠C=∠E.

点评 本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.比较下列数:1,-5,0,-1的大小,正确的是(  )
A.-1<-5<0<1B.-5<-1<0<1C.1<0<-1<-5D.0<-5<-1<1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,AB是⊙O的直径,∠ABC=30°,则∠BAC的度数是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.将连续的奇数1,3,5,7,9,…,排成如图所示的数阵.
(1)十字框中的五个数的和与中间数15有什么关系;
(2)设中间数为a,用式子表示十字框中五个数之和;
(3)若将十字框中上下左右移动,可框住另外五个数,这五个数的和还有这种规律吗;
(4)十字框中五个数之和能等于2015吗?若能,请写出这五个数;若不能,说明理由.
(5)十字框中五个数之和能等于2020吗?若能,请写出这五个数;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠ECD=90°,点D在AB上,连接BE.
(1)图中的全等三角形是△ACD≌△BCE.
(2)试证明(1)中的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知△ABC和△ABD均为等腰直角三角形.∠ACB=∠BAD=90°,点E为边AC上任意一点(点E不与A、C两点重合),作EF⊥EB交AD于点F,交AB于点O.
(1)求证:∠AFO=∠EBO.
(2)判断△EBF的形状,并证明你的判断.(提示:可作EM⊥AE交AB于M)
(3)若E为AC延长线上任意一点(如图②),EF交DA的延长线于点F,其他条件不变,(2)中的结论是否成立?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知AB是⊙O的直径,C、D均在⊙O上,点E在BC的延长线上,CD平分∠ACE
(1)求∠DBA的度数;
(2)求证:BD=AD.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,在△ABC中,点D,E分别在边AB、AC上,DE∥BC.已知AE=6,$\frac{AD}{DB}$=$\frac{3}{4}$,则AC的长等于(  )
A.8B.21C.14D.7

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若a-b+c=0,a≠0,则方程ax2+bx+c=0必有一根是x=-1.

查看答案和解析>>

同步练习册答案