精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC 中,AB=AC,点D,E在边BC上,且BD=CE.

(1)求证: △ABD≌△ACE;

(2)∠B=40°,AB=BE,求∠DAE的度数.

【答案】(1)见解析;(2)40°.

【解析】

(1)根据SAS即可证明.
(2)由AB=BE,推出∠BAE=∠BEA,由∠B=40°,推出∠BAE=∠BEA=70°,由△ABD≌△ACE,推出AD=AE,推出∠ADE=∠AED=70°,推出∠DAE=180°-70°-70°=40°.

(1)证明:∵AB=AC,

∴∠B=∠C,

△ABD△ACE,

∴△ABD≌△ACE.

(2)∵AB=BE,

∴∠BAE=∠BEA,

∵∠B=40°

∴∠BAE=∠BEA=70°

∵△ABD≌△ACE,

∴AD=AE,

∴∠ADE=∠AED=70°

∴∠DAE=180°70°70°=40°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)计算:(a+b)2﹣b(2a+b)

(2)解不等式:(3x+4)(3x-4)<9(x-2)(x+3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的顶点AC的坐标分别为(100),(04),点DOA的中点,点PBC上运动,当ODP是腰长为5的等腰三角形时,点P的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大黄鱼是中国特有的地方性鱼种类,有“国鱼”之称.由于过去滥捕等多种因素,大黄鱼资源已基本枯竭.目前,我市已培育出十余种大黄鱼品种.某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广.通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):

(1)求实验中“宁港”品种鱼苗的数量;
(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;
(3)你认为应选哪一品种进行推广?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行.本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 的直径, 是弦, .若用扇形 (图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点 出发,在矩形 边上沿着 的方向匀速移动,到达点 时停止移动.已知机器人的速度为 个单位长度/ ,移动至拐角处调整方向需要 (即在 处拐弯时分别用时 ).设机器人所用时间为 时,其所在位置用点 表示, 到对角线 的距离(即垂线段 的长)为 个单位长度,其中 的函数图像如图②所示.

(1)求 的长;
(2)如图②,点 分别在线段 上,线段 平行于横轴, 的横坐标分别为 .设机器人用了 到达点 处,用了 到达点 处(见图①).若 ,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3分)如图,AD△ABC的角平分线,DE⊥AC,垂足为EBF∥ACED的延长线于点F,若BC恰好平分∠ABFAE=2BF.给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF,其中正确的结论共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知正比例函数y= x的图象与反比例函数y= 的图象交于A(a,﹣2),B两点.
(1)求反比例函数的表达式和点B的坐标;
(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.

查看答案和解析>>

同步练习册答案