精英家教网 > 初中数学 > 题目详情

【题目】有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB50cm,拉杆BC的伸长距离最大时可达35cm,点ABC在同一条直线上,在箱体底端装有圆形的滚筒⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平面的距离CE59cm.设AFMN

1)求⊙A的半径长;

2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE80cm,∠CAF64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:sin64°≈0.90cos64°≈0.39tan64°≈2.1

【答案】1)圆形滚轮的半径AD的长是8cm;(2BC30cm

【解析】

1)作BHAF于点K,交MN于点H,则△ABK∽△ACG,设圆形滚轮的半径AD的长是xcm,根据相似三角形的对应边的比相等,即可列方程求得x的值;

2)求得CG的长,然后在直角△ACG中,求得AC即可解决问题;

1)作BHAF于点K,交MN于点H

BKCG,△ABK∽△ACG

设圆形滚轮的半径AD的长是xcm

,即

解得:x8

则圆形滚轮的半径AD的长是8cm

2)在RtACG中,CG80872cm).

sinCAF

AC80,(cm

BCACAB805030cm).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:有一组邻边相等的凸四边形叫做“准菱形”.利用该定义完成以下各题:

(1) 理解

填空:如图1,在四边形ABCD中,若     (填一种情况),则四边形ABCD是“准菱形”;

(2)应用

证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明)

(3) 拓展

如图2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将Rt△ABC沿∠ABC的平分线BP方向平移得到△DEF,连接AD,BF,若平移后的四边形ABFD是“准菱形”,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A33),点B40),点C0,﹣1).

1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△ABC

2)在(1)中的条件下,

①点A经过的路径的长为   (结果保留π);②写出点B′的坐标为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2

(1)求k的取值范围;

(2)若=﹣1,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知平行四边形ABCD中,AD = 6AB = A = 45°过点BD分别做BEADDFBC,交ADBC与点EF.点QDF边上一点,∠DEQ = 30°,点PEQ的中点,过点P作直线分别与ADBC相交于点MN.若MN = EQ,则EM的长等于___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).

月均用水量(单位:t)

频数

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)请根据题中已有的信息补全频数分布表和频数分布直方图;

(2)如果家庭月均用水量大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?

(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为6的⊙O中,正方形AGDH与正六边形ABCDEF都内接于⊙O,则图中阴影部分的面积为(  )

A. 279B. 5418C. 18D. 54

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.

1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?

2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?

3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别为O00),A33)、B95),C140),动点PQ同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OAABBC运动,在OAABBC上运动的速度分别为3(单位长度/秒),当PQ中的一点到达C点时,两点同时停止运动.

1)求AB所在直线的函数表达式;

2)如图2,当点QAB上运动时,求CPQ的面积S关于t的函数表达式及S的最大值;

3)在PQ的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.

查看答案和解析>>

同步练习册答案