精英家教网 > 初中数学 > 题目详情
(2012•云南)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点N,连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长.
分析:(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;
(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=x2-16x+64+16,求出即可.
解答:(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠MDO=∠NBO,∠DMO=∠BNO,
∵在△DMO和△BNO中
∠DMO=∠BNO
∠MDO=∠NBO
OB=OD

∴△DMO≌△BNO(AAS),
∴OM=ON,
∵OB=OD,
∴四边形BMDN是平行四边形,
∵MN⊥BD,
∴平行四边形BMDN是菱形.

(2)解:∵四边形BMDN是菱形,
∴MB=MD,
设MD长为x,则MB=DM=x,
在Rt△AMB中,BM2=AM2+AB2
即x2=(8-x)2+42
解得:x=5,
答:MD长为5.
点评:本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用,对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•云南)如图,在平面直角坐标系中,直线y=-
1
3
x+2交x轴于点P,交y轴于点A.抛物线y=-
1
2
x2+bx+c的图象过点E(-1,0),并与直线相交于A、B两点.
(1)求抛物线的解析式(关系式);
(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;
(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•云南)如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端D与点C、B在同一直线上,已知AC=32米,CD=16米,求荷塘宽BD为多少米?(取
3
≈1.73
,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•云南)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.
求证:△ABC≌△MED.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•云南)如图是由6个形同的小正方体搭成的一个几何体,则它的俯视图是(  )

查看答案和解析>>

同步练习册答案