【题目】如图,在平面直角坐标系xOy中,一次函数y=3x+2的图象与y轴交于点A,与反比例函数y=(k≠0)在第一象限内的图象交于点B,且点B的横坐标为1.过点A作AC⊥y轴交反比例函数y=(k≠0)的图象于点C,连接BC.
(1)求反比例函数的表达式.
(2)求△ABC的面积.
【答案】(1)反比例函数的表达式为y=;
(2)S△ABC=.
【解析】
试题分析:(1)先由一次函数y=3x+2的图象过点B,且点B的横坐标为1,将x=1代入y=3x+2,求出y的值,得到点B的坐标,再将B点坐标代入y=,利用待定系数法即可求出反比例函数的表达式;
(2)先由一次函数y=3x+2的图象与y轴交于点A,求出点A的坐标为(0,2),再将y=2代入y=,求出x的值,那么AC=.过B作BD⊥AC于D,则BD=yB﹣yC=5﹣2=3,然后根据S△ABC=ACBD,将数值代入计算即可求解.
试题解析:(1)∵一次函数y=3x+2的图象过点B,且点B的横坐标为1,
∴y=3×1+2=5,
∴点B的坐标为(1,5).
∵点B在反比例函数y=的图象上,
∴k=1×5=5,
∴反比例函数的表达式为y=;
(2)∵一次函数y=3x+2的图象与y轴交于点A,
∴当x=0时,y=2,
∴点A的坐标为(0,2),
∵AC⊥y轴,
∴点C的纵坐标与点A的纵坐标相同,是2,
∵点C在反比例函数y=的图象上,
∴当y=2时,2=,解得x=,
∴AC=.
过B作BD⊥AC于D,则BD=yB﹣yC=5﹣2=3,
∴S△ABC=ACBD=××3=.
科目:初中数学 来源: 题型:
【题目】如图,点E是菱形ABCD边上一动点,它沿A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,下列图象中能反映y与x函数关系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD,BE分别为边BC,AC上的高线,D,E为垂足,M为AB的中点,N为DE的中点.求证:
(1)△MDE是等腰三角形.
(2)MN⊥DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,MA1∥NA2 , 则∠A1+∠A2= 度.
如图2,MA1∥NA3 , 则∠A1+∠A2+∠A3= 度.
如图3,MA1∥NA4 , 则∠A1+∠A2+∠A3+∠A4= 度.
如图4,MA1∥NA5 , 则∠A1+∠A2+∠A3+∠A4+∠A5= 度.从上述结论中你发现了什么规律?
如图5,MA1∥NAn , 则∠A1+∠A2+∠A3+…+∠An= 度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com