精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2-2(k+1)x+4k的图象与x轴分别交于点A(x1,0)、B(x2,0),且-
3
2
<x1-
1
2

(1)求k的取值范围;
(2)设二次函数y=x2-2(k+1)x+4k的图象与y轴交于点M,若OM=OB,求二次函数的表达式;
(3)在(2)的条件下,若点N是x轴上的一点,以N、A、M为顶点作平行四边形,该平行四边形的第四个顶点F在二次函数y=x2-2(k+1)x+4k的图象上,请直接写出满足上述条件的平行四边形的面积.
(1)令y=0,则x2-2(k+1)x+4k=0,即(x-2k)(x-2)=0,
解方程得:x=2k或x=2,则A(2k,0),B(2,0).
由题意得,-
3
2
<2k<-
1
2

故可得:-
3
4
<k<-
1
4


(2)∵OM=OB,B的坐标为:(2,0),
∴M点坐标为:(0,-2),
把点M的坐标分别代入y=x2-2(k+1)x+4k中,可得:4k=-2,
解得:k=-
1
2

故二次函数表达式为:y=x2-x-2.

(3)由(2)知k=-
1
2
,则A(-1,0).
①如图1,当AM为边时,AN=MF,且ANMF.
由(2)知,二次函数表达式为:y=x2-x-2.
∵M点坐标为:(0,-2),
∴当y=-2时,-2=x2-x-2,解得x=1或x=0,
∴点F的坐标为(1,-2)或(0,-2)(与点M重合,舍去),
∴AN=MF=1,
此时S?AMFN=AN•NM=1×2=2;
②如图2,当AM为对角线时,同理证得AN=MF=1,
此时S?AMFN=AN•NM=1×2=2;
③如图3,当AM为边时,AE=EN,ME=FE.
设F(a,b),N(t,0),
a
2
=
t-1
2
b-2
2
=0
b=a2-a-2

解得,
a=
1+
17
2
b=2
t=
3+
17
2
a=
1-
17
2
b=2
t=
3-
17
2

此时,S?AMFN=AN•OM=(t+1)×2=2×
3+
17
2
+2=5+
17
,或S?AMFN=AN•OM=(t+1)×2=2×
3-
17
2
+2=5-
17

综上所述,符合条件的平行四边形的面积是:2,5+
17
5-
17

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c,其中a>0,b2-4a2c2=0,它的图象与x轴只有一个交点,交点为A,与y轴交于点B,且AB=2.
(1)求二次函数解析式;
(2)当b<0时,过A的直线y=x+m与二次函数的图象交于点C,在线段BC上依次取D、E两点,若DE2=BD2+EC2,试确定∠DAE的度数,并简述求解过程.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

苍南县是浙江省的海洋大县,水产资源十分丰富,春节期间人们对水产品的需求将达到高峰期,某水产品销售公司对历年春节期间的市场行情进行了调查,调查发现某种水产品的每千克售价y1(元)与销售第x天满足关系式y1=2x+30(1≤x≤15且x为整数);而其每千克的成本y2(元)与销售第x天满足函数关系如图所示.
(1)试确定b、c的值;
(2)求出这种水产品每千克的利润y(元)与销售第x天之间的函数关系式;
(3)第几天出售这种水产品每千克的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)
(1)求证:E点在y轴上;
(2)如果有一抛物线经过A,E,C三点,求此抛物线方程.
(3)如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少买10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度.他先测出门的宽度AB=8m,然后用一根长为4m的小竹竿CD竖直地接触地面和门的内壁,并测得AC=1m.小强画出了如图的草图,请你帮他算一算门的高度OE(精确到0.1m).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知点A(-2,0),点B在x轴的正半轴上,点M在y轴的负半轴上,且|AB|=6,cos∠OBM=
5
5
,点C是M关于x轴的对称点.
(1)求过A、B、C三点的抛物线的函数表达式及其顶点D的坐标;
(2)设直线CD交x轴于点E,在线段OB的垂直平分线上求一点P,使点P到直线CD的距离等于点P到原点的O距离;
(3)在直线CD上方(1)中的抛物线(不包括C、D)上是否存在点N,使四边形NCOD的面积最大?若存在,求出点N的坐标及该四边形面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,P是抛物线y1=x2-6x+9对称轴上的一个动点,在对称轴左边的直线x=t平行于y轴,分别与直线y2=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示.
(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;
(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由.

查看答案和解析>>

同步练习册答案