精英家教网 > 初中数学 > 题目详情

【题目】某水果大卖场每日批量进货销售某种水果,假设日销售量与日进货量相等.设该水果进货量为x千克,每千克进货成本为y元,每千克售价为s元,y与x的关系如图,s与x满足关系式:s=﹣ x+12.

(1)请解释图中线段BC的实际意义;
(2)该水果进货量为多少时,获得的日销售利润最大?最大利润是多少?

【答案】
(1)解:图中线段BC表示当进货量80≤x≤120时,每千克的进货成本y=4元
(2)解:设AB所在直线解析式为:y=kx+b,

由题意得:

解得:

故当0<x<80时,y=﹣ x+6,

设获得的日销售利润为W,根据题意,

①当0<x<80时,

W=[(﹣ x+12)﹣(﹣ x+6)]x

=﹣ x2+6x

=﹣ (x﹣72)2+216,

当x=72时,W最大值=216;

②当80≤x≤120时,

W═(﹣ x+12﹣4)x

=﹣ x2+8x

=﹣ (x﹣60)2+240,

当x>60时,W随x的增大而减小,

故当x=80时,W最大值=

∵216>

∴当水果进货量为72千克时,获得的日销售利润最大,最大利润是216元


【解析】(1)图中线段BC表示当进货量80≤x≤120时,每千克的进货成本均为4元;(2)根据“获得的日销售利润=每千克的利润×进货量”分0<x<80和80≤x≤120列出函数关系式,求最大值,比较后可得.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某海域内有一艘轮船发生故障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障渔船会合后立即将其拖回.如图折线段O﹣A﹣B表示救援船在整个航行过程中离港口的距离y(海里)随航行时间x(分钟)的变化规律.抛物线y=ax2+k表示故障渔船在漂移过程中离港口的距离y(海里)随漂移时间x(分钟)的变化规律.已知救援船返程速度是前往速度的 .根据图象提供的信息,解答下列问题:
(1)救援船行驶了海里与故障船会合;
(2)求该救援船的前往速度;
(3)若该故障渔船在发出求救信号后40分钟内得不到营救就会有危险,请问救援船的前往速度每小时至少是多少海里,才能保证故障渔船的安全.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我校对全部900名学生就校园安全知识的了解程度,采用随机抽样调查的方式进行调查,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有人,条形统计图中“了解”部分所对应的人数是人;
(2)扇形统计图中“基本了解”部分所对应扇形的圆心角为°;
(3)若没有达到“了解”或“基本了解”的同学必须重新接受安全教育。 请根据上述调查结果估计我校学生中必须重新接受安全教育的总人数大约为人;
(4)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请直接写出恰好抽到1个男生和1个女生的概率。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=40°,BC=3,分别以点B,C为圆心,BC长为半径在BC右侧画弧,两弧交于点D,与AB,AC的延长线分别交于点E,F,则弧DE和弧DF的长度和为(

A.
B.
C.
D.2π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系xOy中,O为坐标原点,点P是反比例函数y= (x>0)图象上的一个动点,若以点P为圆心,3为半径的圆与直线y=x相交,交点为A,B,当弦AB的长等于2 时,点P的坐标为(

A.(1,6)和(6,1)
B.(2,3)和(3,2)??
C.( ,3 )和(3
D.( ,2 )和(2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015年12月16﹣18日,第二届互联网大会在浙江乌镇胜利举行,这说明我国互联网发展走到了世界的前列,尤其是电子商务.据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.

(1)当销售单价定为50元时,求每月的销售件数;
(2)设每月获得利润为w(元),求每月获得利润w(元)关于销售单价x(元)的函数解析式;
(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°,AB=AC,DA∥BC,tan∠DBA= ,若CD=2 ,则线段BC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;EG⊥CG.
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案