【题目】不等式 的解集在数轴上表示正确的是( )
A.
B.
C.
D.
【答案】B
【解析】 ,
由①得,x≥﹣1,
由②得,x<3,
不等式组的解集为﹣1≤x<3.
在数轴上表示为
.
所以答案是:B.
【考点精析】本题主要考查了不等式的解集在数轴上的表示和一元一次不等式组的解法的相关知识点,需要掌握不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈;解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】某商场准备进一批两种不同型号的衣服,已知购进种型号衣服9件,种型号衣服10件,则共需1810元;若购进种型号衣服12件,种型号衣服8件,共需1880元;已知销售一件型号衣服可获利18元,销售一件型号衣服可获利30元.要使在这次销售中获利不少于699元,且型号衣服不多于28件.
(1)求型号衣服进价各是多少元?
(2)若已知购进型号衣服是型号衣服的2倍还多4件,则商店在这次进货中可有几种方案?并简述购货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.
(1)判断线段DE、FG的位置关系,并说明理由;
(2)连结CG,求证:四边形CBEG是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.
(1)求W关于x的函数关系式,并写出自变量x的取值范围;
(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;
(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,甲乙两团队联合购票比分别购票最多节约3400元,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为,剩下的水量为.下面能反映与之间的关系的大致图象是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).
(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);
点A关于x轴对称的点坐标为
点B关于y轴对称的点坐标为
点C关于原点对称的点坐标为
(2)若网格上的每个小正方形的边长为1,则△ABC的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图长方形的位置如图所示,点的坐标为,点从点出发向点移动,速度为每秒个单位;点同时从点出发向点移动,速度为每秒个单位.
(1)请写出点、的坐标.
(2)经过几秒后,、两点与原点距离相等.
(3)在点、移动过程中,四边形的面积有何变化,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角板,
(1)按如图①所示方式放置,点三点共线,,求的度数;
(2)在(1)的条件下,若分别是与内部的一条射线,且均以点为中心,分别从位置出发,以度/秒、度/秒的旋转速度沿逆时针方向旋转,当与重叠时,所有旋转均停止,试说明:当旋转秒后,
(3)若三角板 (不含角)是一块非标准三角板,按如图②所示方式放置,使,作射线,若,求与的度数之比.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com