(2013•江西)某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
●操作发现:
在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是
①②③④
①②③④
(填序号即可)
①AF=AG=
AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.
●数学思考:
在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;
●类比探究:
在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:
等腰直角三角形
等腰直角三角形
.