精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数的图象与反比例函数的图象交于第一象限两点,与坐标轴交于两点,连结.

1)求的函数解析式;

2)将直线向上平移个单位到直线,此时,直线上恰有一点满足,求的值.

【答案】1 ;(2

【解析】

1)将代入,即可求得反比例函数的解析式;根据反比例函数的解析式可求得,利用待定系数法即可求得一次函数的解析式;

2)根据两点之间的距离公式求得的长,结合,判断得到四边形是菱形,再求得点的坐标,利用待定系数法求得直线的解析式,从而求得答案.

1)将代入,解得

∴反比例函数解析式为

代入,解得

∴点的坐标为:

代入,得:

解得:

∴一次函数解析是为,反比例函数解析式为

2)连接OGAB于点E,连接GB

∵直线A的解析式为:,交坐标轴于点A(05)B(50)

,∠OBE=45

又∵

则四边形是菱形,

AB垂直平分OG

,∠OBE=GBE=45

轴,

∴点坐标为 (55)

设平移后的直线为:,过

解得:

∴点的坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线y=ax2+bx+3a0)与x轴交于点A10)和点B-30),与y轴交于点C

1)求抛物线的解析式;
2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
3)如图②,若点E为第二象限抛物线上一动点,连接BECE,求四边形BOCE面积的最大值,并求此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂设计了一款成本为20元件的工艺品投放市场进行试销,经过调查,得到如下数据:

销售单价x(元件)

30

40

50

60

每天销售量y(件)

500

400

300

200

1)研究发现,每天销售量y与单价x满足一次函数关系,求出yx的关系式;

2)当地物价部门规定,该工艺品销售单价最高不能超过50元件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在圆内接四边形中,,则四边形的面积为(

A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,轴,点都在反比例函数上,点在反比例函数上,则______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形OABC的边OAOC分别在y轴和x轴的正半轴上,且长分别为m4mDAB的中点,抛物线y=﹣x2+bx+c经过点A、点D

1)当m1时,求抛物线y=﹣x2+bx+c的函数关系式;

2)延长BC至点E,连接OE,若OD平分∠AOE,抛物线与线段CE相交,求抛物线的顶点P到达最高位置时的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

已知实数mn满足(2m2n21)(2m2n21)80,试求2m2n2的值.

解:设2m2n2t,则原方程变为(t1)(t1)80,整理得t2180t281

所以t=土9,因为2m2n20,所以2m2n29.

上面这种方法称为换元法,把其中某些部分看成一个整休,并用新字母代替(即换元),则能使复杂的问题简单化.

根据以上阅读材料内容,解决下列问题,并写出解答过程.

1)已知实数xy,满足(2x22y23)(2x22y23)27,求x2y2的值.

2)已知RtACB的三边为abcc为斜边),其中ab满足(a2b2)(a2b24)5,求RtACB外接圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的半径为1,AC是⊙O的直径,过点C作⊙O的切线BC,EBC的中点,AB交⊙OD点.

(1)直接写出EDEC的数量关系:_________;

(2)DE是⊙O的切线吗?若是,给出证明;若不是,说明理由;

(3)填空:当BC=_______时,四边形AOED是平行四边形,同时以点O、D、E、C为顶点的四边形是_______.

查看答案和解析>>

同步练习册答案