精英家教网 > 初中数学 > 题目详情
如图,已知有四个动点P、Q、E、F分别从正方形ABCD的顶点A、B、C、D同时出发,沿AB、BC、CD、DA以同样的速度匀速向B、C、D、A移动.
(1)求证:四边形PQEF是正方形.
(2)PE是否总过某一点,并说明理由.
(3)四边形PQEF的顶点在何处时,其面积有最小值和最大值,并求其最小值和最大值.
分析:(1)有一组邻边相等并且有一个角是直角的平行四边形叫做正方形,故可根据正方形的定义证明四边形PQEF是否使正方形.
(2)证PE是否过定点时,可连接AC,证明四边形APCE为平行四边形,即可证明PE过定点.
(3)当对角线最小时,面积最小,对角线最大值时,面积最大.
解答:解:(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,
∴BP=QC=ED=FA.
又∵∠BAD=∠B=∠BCD=∠D=90°,
∴△AFP≌△BPQ≌△CQE≌△DEF.
∴FP=PQ=QE=EF,∠APF=∠PQB,
∴∠APF+∠BPQ=∠PQB+∠BPQ=90°,
∴四边形PQEF为正方形;

(2)连接PC、AE,

∵AP平行且等于EC,
∴四边形APCE为平行四边形.
∴O为对角线AC的中点,
∴对角线PE总过AC的中点O;

(3)正方形ABCD与正方形PQEF的对角线交点是重合的,
当OP⊥AB时,四边形PQEF面积最小,为原正方形面积的一半,此时S正方形PQEF=
1
2
S正方形ABCD
当P与顶点B重合时,面积最大,S正方形PQEF=S正方形ABCD
点评:本题考查了四边形的综合题,在证明过程中,应用了正方形的性质和平行四边形的判定定理,为使问题简单化,在证明过程中,可适当加入辅助线,此题难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•巴中)已知如图所示,在平面直角坐标系中,四边形ABC0为梯形,BC∥A0,四个顶点坐标分别为A(4,0),B(1,4),C(0,4),O(0,O).一动点P从O出发以每秒1个单位长度的速度沿OA的方向向A运动;同时,动点Q从A出发,以每秒2个单位长度的速度沿A→B→C的方向向C运动.两个动点若其中一个到达终点,另一个也随之停止.设其运动时间为t秒.
(1)求过A,B,C三点的抛物线的解析式;
(2)当t为何值时,PB与AQ互相平分;
(3)连接PQ,设△PAQ的面积为S,探索S与t的函数关系式.求t为何值时,S有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知如图所示,在平面直角坐标系中,四边形ABC0为梯形,BC∥A0,四个顶点坐标分别为A(4,0),B(1,4),C(0,4),O(0,O).一动点P从O出发以每秒1个单位长度的速度沿OA的方向向A运动;同时,动点Q从A出发,以每秒2个单位长度的速度沿A→B→C的方向向C运动.两个动点若其中一个到达终点,另一个也随之停止.设其运动时间为t秒.
(1)求过A,B,C三点的抛物线的解析式;
(2)当t为何值时,PB与AQ互相平分;
(3)连接PQ,设△PAQ的面积为S,探索S与t的函数关系式.求t为何值时,S有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源:四川省中考真题 题型:解答题

已知如图所示,在平面直角坐标系中,四边形ABC0为梯形,BC∥AO,四个顶点坐标分别为A(4,0),B(1,4),C(0,4),O(0,0)。一动点P从O出发以每秒1个单位长度的速度沿OA的方向向A运动;同时,动点Q从A出发,以每秒2个单位长度的速度沿A→B→C的方向向C运动。两个动点若其中一个到达终点,另一个也随之停止.设其运动时间为t秒。
(1)求过A,B,C三点的抛物线的解析式;
(2)当t为何值时,PB与AQ互相平分;
(3)连接PQ,设△PAQ的面积为S,探索S与t的函数关系式,求t为何值时,S有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源:2011年四川省巴中市中考数学试卷(解析版) 题型:解答题

已知如图所示,在平面直角坐标系中,四边形ABC0为梯形,BC∥A0,四个顶点坐标分别为A(4,0),B(1,4),C(0,4),O(0,O).一动点P从O出发以每秒1个单位长度的速度沿OA的方向向A运动;同时,动点Q从A出发,以每秒2个单位长度的速度沿A→B→C的方向向C运动.两个动点若其中一个到达终点,另一个也随之停止.设其运动时间为t秒.
(1)求过A,B,C三点的抛物线的解析式;
(2)当t为何值时,PB与AQ互相平分;
(3)连接PQ,设△PAQ的面积为S,探索S与t的函数关系式.求t为何值时,S有最大值?最大值是多少?

查看答案和解析>>

同步练习册答案