分析 (1)先根据等腰直角三角形的性质及已知条件得出∠DAB=∠DBA=30°,则AD=BD;
(2)证明CD是边AB的垂直平分线,得出∠ACD=∠BCD=45°,然后根据三角形外角的性质求出∠CDE=∠BDE=60°即可;
(3)延长CD至点G,交AB于点G,连接CM,证得△CME≌△CDA,得出DA=DB=8,进一步求得AB,CG,DG,求得CD即可.
解答 解:(1)∵△ABC是等腰直角三角形,∠ACB=90°,
∴∠BAC=∠ABC=45°,
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD;
(2)∵BD=AD,
∴D在AB的垂直平分线上,
∵AC=BC,
∴C也在AB的垂直平分线上,
即直线CD是AB的垂直平分线,
∴∠ACD=∠BCD=45°,
∴∠CDE=∠CAD+∠ACD=15°+45°=60°,
∴∠BDE=∠DBA+∠BAD=60°;
∴∠CDE=∠BDE,
即DE平分∠BDC;
(3)如图,
∵DM=DC,∠CDE=60°,
∴△DCM为等边三角形,
∴∠CDM=∠CMD,
∴∠ADC=∠CME,
∵CE=AC,
∴∠E=∠DAC,
在△CME和△CDA中,
$\left\{\begin{array}{l}{∠E=∠DAC}\\{∠CME=∠ADC}\\{CD=CM}\end{array}\right.$,
∴△CME≌△CDA,
∴AD=ME=8,
延长CD至点G,交AB于点G,
∴DG=$\frac{1}{2}$AD=4,AB=2AG=2$\sqrt{{8}^{2}-{4}^{2}}$=8$\sqrt{3}$,
∴CG=AG=4$\sqrt{3}$,
∴CD=CG-DG=4$\sqrt{3}$-4.
点评 此题考查三角形全等的判定与性质,等腰直角三角形的性质,等边三角形的判定与性质,勾股定理,注意结合图形,灵活运用条件解决问题.
科目:初中数学 来源: 题型:选择题
A. | 30m | B. | 24m | C. | 18m | D. | 12m |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com