精英家教网 > 初中数学 > 题目详情
按要求解下列方程:
(1)用配方法解方程2x2+3x-1=0;
(2)用公式法解方程(x+1)(3x-1)=0;
(3)用因式分解法解方程(2x+1)2=(x-3)2
【答案】分析:(1)方程两边同时除以2变形后,将常数项移到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;
(2)将方程整理为一般形式,找出a,b及c的值,计算出根的判别式的值大于0,代入求根公式即可求出解;
(3)将方程移项后,利用平方差公式分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
解答:解:(1)方程两边同除以2,得x2+x-=0,
移项,得x2+x=
配方,得x2+x+(2=+(2,即(x+2=
由平方根的意义,得x+
所以,x1=,x2=
(2)将原方程化为一般形式,得3x2+2x-2=0,
这里a=3,b=2,c=-2,
∵b2-4ac=22-4×3×(-2)=28,
∴x==
即x1=,x2=
(3)原方程变形为(2x+1)2-(x-3)2=0.
把方程的左边进行因式分解,得(2x+1+x-3)(2x+1-x+3)=0,
即(3x-2)(x+4)=0,
从而 3x-2=0或x+4=0,
所以x1=,x2=-4.
点评:此题考查了解一元二次方程-因式分解法,利用此方法解方程时,首先将方程左边化为积的形式,右边化为0,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

按要求解下列方程:
(1)(配方法)2x2-5x-1=0
(2)(因式分解法)5x2-8x-4=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

按要求解下列方程
①x2-4x=3(配方法);
②(x-1)(x+5)=7;
③2(x+1)2=8.

查看答案和解析>>

科目:初中数学 来源: 题型:

按要求解下列方程:
(1)3(2x-1)2-12=0;
(2)-2x2+4x+6=0(配方法);
(3)x2-4x+2=0(公式法);       
(4)x2+2x=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

按要求解下列方程:
(1)x2-6x-1=0(配方法);
(2)2x2+34x-1=0(公式法).

查看答案和解析>>

科目:初中数学 来源: 题型:

按要求解下列方程
(1)y2-2y-4=0(公式法)    
(2)2x2-3x-5=0(配方法)   
(3)(x+1)(x+8)=-12.

查看答案和解析>>

同步练习册答案