精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴交于(1,0)(5,0)两点,若一个动点P自OA的中点M出发,先到达x轴上的某点E,再到达抛物线的对称轴上某点F,最后运动到点A,则使点P运动的总路径最短的点E、点F的坐标分别是:E______,F______.
如图,∵抛物线与x轴交于(1,0)(5,0)两点,
∴抛物线的对称轴为直线x=
1+5
2
=3,
∴点A(0,3)关于直线x=3的对称点A′为(6,3),
又∵OA的中点M为(0,
3
2
),
∴点M关于x轴的对称点M′为(0,-
3
2
),
连接A′M′与x轴的交点、与对称轴的交点即为所求的点E、F,
设直线A′M′的解析式为y=kx+b,
6k+b=3
b=-
3
2

解得
k=
3
4
b=-
3
2

所以,直线A′M′的解析式为y=
3
4
x-
3
2

令y=0,则
3
4
x-
3
2
=0,
解得x=2,
令x=3,则y=
3
4
×3-
3
2
=
3
4

所以,点E(2,0),F(3,
3
4
).
故答案为:E(2,0);(3,
3
4
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知函数y1=x,y2=x2+bx+c,α,β为方程y1-y2=0的两个根,点M(t,T)在函数y2的图象上.
(Ⅰ)若α=
1
3
,β=
1
2
,求函数y2的解析式;
(Ⅱ)在(Ⅰ)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为
1
123
时,求t的值;
(Ⅲ)若0<α<β<1,当0<t<1时,试确定T,α,β三者之间的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一位运动员在距篮下4.5米处跳起投篮,篮球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最高度3.5米,篮筐中心到地面距离为3.05米,建立坐标系如图.该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,他跳离地面的高度为0.2米,问这次投篮是否命中,为什么?若不命中,他应向前(或向后)移动几米才能使球准确命中?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,CD是⊙O的一条非直径的弦,且ABCD,连接AD和BC,
(1)AD和BC相等吗?为什么?
(2)如果AB=2AD=4,且A、B、C、D四点在同一抛物线上,请在图中建立适当的直角坐标系,求出该抛物线的解析式.
(3)在(2)中所求抛物线上是否存在点P,使得S△PAB=
1
2
S四边形ABCD?若存在,求出P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数的顶点坐标为(2,0),直线y=x+2与该二次函数的图象交于A,B两点,其中A点在y轴上,
(I)求此二次函数的解析式.
(II)P为线段AB上一点(A,B两端点除外),过P点作x轴的垂线PC与(I)中的二此函数的图象交于Q点,设线段PQ的长为m,P点的横坐标为x,求出函数m与自变量x之间的函数关系式,并求出自变量x的取值范围.
(III)线段AB上是否存在一点,使(II)中的线段PQ的长等于5?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知直线y=-2x+3与抛物线y=x2相交于A、B两点,O为坐标原点,那么△OAB的面积等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知函数y=x2-kx+3图象的顶点坐标为C,并与x轴相交于A、B,且AB=4,
(1)求实数k的值;
(2)若P是上述抛物线上的一个动点(除点C外),求使S△ABP=S△ABC成立的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?
(参考公式:当x=-
b
2a
时,二次函数y=ax2+bx+c(a0)有最小(大)值
4ac-b2
4a

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线的解析式是y=
1
4
x2
+1,点C的坐标为(-4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.
(1)写出点M的坐标;
(2)当四边形CMQP是以MQ,PC为腰的梯形时.
①求t关于x的函数解析式和自变量x的取值范围;
②当梯形CMQP的两底的长度之比为1:2时,求t的值.

查看答案和解析>>

同步练习册答案