精英家教网 > 初中数学 > 题目详情
精英家教网如图,二次函数y=x2+bx+c的图象经过点M(1,-2)、N(-1,6).把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5.将△ABC沿x轴向右平移,当点C落在抛物线上时,则△ABC平移的距离为
 
.若把△ABC沿着y轴的负方向平移距离为
 
,能使得BC所在直线与抛物线只有一个交点.
分析:把M,N的坐标代入y=x2+bx+c即可求得抛物线解析式,易求得AB长,利用勾股定理即可求得AC长,那么把AC作为抛物线上点的纵坐标代入可求得横坐标,减去点A的横坐标即为平移的距离;易求得BC的解析式,设出平移后的解析式,与二次函数组成方程组,整理后让判别式为0即可得到平移的距离.
解答:解:把M、N的坐标代入y=x2+bx+c,得:b+c=-3,c-b=5,解得b=-4,c=1,
∴函数解析式为:y=x2-4x+1.
∵AB=4-1=3,BC=5,
∴AC=4,
∴C(1,4),
∴4=x2-4x+1,
解得x=2+
7
或x=2-
7
(舍),2+
7
-1=1+
7

∴△ABC向右平移了(1+
7
)个单位;
设BC的解析式为y=kx+b,
则4k+b=0,k+b=4,
解得k=-
4
3
,b=
16
3

∴y=-
4
3
x+
16
3

设向上平移m个单位,则y=-
4
3
x+
16
3
+m,那么
y=x2-4x+1
y=-
4
3
x+
16
3
+m

∴x2-4x+1=-
4
3
x+
16
3
+m,
∴x2-
8
3
x+(-
13
3
-m)=0,
当△=0时,
8
3
2-4×(-m-
13
3
)=0,
解得m=-
55
9

∴应向上平移
55
9
个单位.
点评:左右平移,点的纵坐标不变;抛物线与直线只有一个交点,抛物线解析式与直线解析式整理为一元二次方程后,根的判别式为0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,二次函数的图象经过点D(0,
7
9
3
),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数图象的顶点为坐标原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图象与y相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于点A(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达30万元;
(3)从第几个月起公司开始盈利?该月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b
0(填“>”、“<”、“=”);
(2)当x满足
x<-4或x>2
x<-4或x>2
时,ax2+bx+c>0;
(3)当x满足
x<-1
x<-1
时,ax2+bx+c的值随x增大而减小.

查看答案和解析>>

同步练习册答案