精英家教网 > 初中数学 > 题目详情
(2002•宜昌)如图,是一块三角形的纸板,要从这块纸板上裁下一块圆形的用料,并使圆形用料的面积最大,请你确定此圆的圆心O.(尺规作图,保留痕迹,不写作法和证明.)

【答案】分析:要使用料的面积最大,所以要与三个边相切即可.
解答:解:分别作三角形任意两个个角的角平分线交于一点O,即,点O即为所要求圆的圆心.如下图所示:

圆在三角形内相切时圆的半径最大,故此时圆的面积最大,点O即为所要求的圆心.
点评:考查用尺规作图,做圆内接三角形.
练习册系列答案
相关习题

科目:初中数学 来源:2002年湖北省宜昌市中考数学试卷(解析版) 题型:解答题

(2002•宜昌)如图,扇形DEF的圆心角∠FDE=90°点D(d,0)在点E的左侧,d为大于0的实数,直线y=x与交于点M,OM=2(O是坐标原点),以直线DF为对称轴的抛物线y=x2+px+q与x轴交于点E,
(1)求点E的坐标;
(2)抛物线y=x2+px+q与x轴的交点有可能都在原点的右侧吗?请说明理由;
(3)设抛物线y=x2+px+q的顶点到x轴的距离为h,求h的取值范围.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2002•宜昌)如图,扇形DEF的圆心角∠FDE=90°点D(d,0)在点E的左侧,d为大于0的实数,直线y=x与交于点M,OM=2(O是坐标原点),以直线DF为对称轴的抛物线y=x2+px+q与x轴交于点E,
(1)求点E的坐标;
(2)抛物线y=x2+px+q与x轴的交点有可能都在原点的右侧吗?请说明理由;
(3)设抛物线y=x2+px+q的顶点到x轴的距离为h,求h的取值范围.

查看答案和解析>>

科目:初中数学 来源:2002年湖北省宜昌市中考数学试卷(解析版) 题型:解答题

(2002•宜昌)如图,AD为圆内接三角形ABC的外角∠EAC的平分线,它与圆交于点D,F为BC上的点.
(1)求证:BD=DC;
(2)请你再补充一个条件使直线DF一定经过圆心,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年湖北省宜昌市中考数学试卷(解析版) 题型:解答题

(2002•宜昌)如图,⊙O的半径是6,求⊙O的内接正六边形ABCDEF的一边AB所对弧的长.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《锐角三角函数》(05)(解析版) 题型:解答题

(2002•宜昌)如图,李庄计划在山坡上的A处修建一个抽水泵站,抽取山坡下水池中的水用于灌溉,已知A到水池C处的距离AC是50米,山坡的坡角∠ACB=15°,由于大气压的影响,此种抽水泵的实际吸水扬程AB不能超过10米,否则无法抽取水池中的水,试问泵站能否建在A处?

查看答案和解析>>

同步练习册答案