分析 (1)根据正比例的定义设y=kx,然后把x=1时,y=2代入计算求出k值,再整理即可得解;
(2)把x=-1代入解析式求得即可;
(3)根据0≤y≤5得关于x的不等式组,解不等式组即可求得x的取值范围.
解答 解:(1)设y=kx,
将x=1、y=2代入,得:k=2,
故y=2x;
(2)当x=-1时,y=2×(-1)=-2;
(3)∵0≤y≤5,
∴0≤2x≤5,
解得:0≤x≤$\frac{5}{2}$.
点评 此题主要考查了待定系数法求一次函数解析式,以及求函数值,关键掌握待定系数法求一次函数解析式一般步骤:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 以上都不对 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\frac{\sqrt{5}-1}{2}$ | D. | $\frac{\sqrt{5}+1}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 最大值$\frac{3}{2}$ | B. | 最小值$\frac{3}{2}$ | C. | 最大值-$\frac{1}{2}$ | D. | 最小值-$\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 图书馆 | B. | 教学楼 | C. | 实验楼 | D. | 食堂 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com