精英家教网 > 初中数学 > 题目详情

【题目】如图1,在平面直角坐标系中,抛物线 y=x2x与x轴交于A、B、两点(点A在点B的左侧),与y轴交于点C.

(1)判断ABC形状,并说明理由.

(2)在抛物线第四象限上有一点,它关于x轴的对称点记为点P,点M是直线BC上的一动点,当PBC的面积最大时,求PM+MC的最小值;

(3)如图2,点K为抛物线的顶点,点D在抛物线对称轴上且纵坐标为,对称轴右侧的抛物线上有一动点E,过点E作EHCK,交对称轴于点H,延长HE至点F,使得EF=,在平面内找一点Q,使得以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线 是对称轴,请问是否存在这样的点Q,若存在请直接写出点E的横坐标,若不存在,请说明理由.

【答案】(1)结论:ABC是直角三角形2(3)存在.满足条件的点E的横坐标为

【解析】试题分析:(1)由△AOC∽△COB,推出∠ACO=∠OBC,由∠OBC+∠OCB=90°,推出∠ACO+∠BCO=90°,推出∠ACB=90°,得出结论;

(2)如图1中,设第四象限抛物线上一点N(m, x2x﹣),点N关于x轴的对称点P(m,-x2+x+),作过B、C分别作y轴、x轴的平行线交于点G,连接PG,可得S△PBC=S△PCG+S△PBG﹣S△BCG,由此可得△PBC面积最大时的点P的坐标,如图2,作ME⊥CG于点M,由△CEM∽△BOC,根据对应边成比例,得出PM+CM=PM+ME,根据垂线段最短可知,当PE⊥CG时,PM+ME最短,由此即可解决;

(3)分三种情况讨论,①如图3,当DH=HF,HQ平分∠DHF时,以嗲F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴,②如图4,当DH=HF,HQ平分∠DHF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴,③如图5,当DH=DF,DQ平分∠HDF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴,分别求解即可.

试题解析:(1)结论:△ABC是直角三角形.理由如下,

对于抛物线 y=x2x﹣,令y=0得 x2x﹣=0,解得x=﹣或3;令x=0得y=﹣

∴A(﹣,0),C(0,﹣),B(3,0),

∴OA=,OC=,OB=3

==,∵∠AOC=∠BOC,

∴△AOC∽△COB,

∴∠ACO=∠OBC,

∵∠OBC+∠OCB=90°,

∴∠ACO+∠BCO=90°,

∴∠ACB=90°.

(也可以求出AC、BC、AB利用勾股定理的逆定理证明).

(2)如图1中,设第四象限抛物线上一点N(m, m2m﹣),点N关于x轴的对称点P(m,﹣m2+m+),作过B、C分别作y轴,x轴的平行线交于点G,连接PG.

∵G(3,﹣),

∴S△PBC=S△PCG+S△PBG﹣S△BCG=××(﹣m2+m+2)+×(3﹣m)﹣××=﹣(m﹣2+

∵﹣<0,

∴当m=时,△PBC的面积最大,

此时P(),

如图2中,作ME⊥CG于M.

∵CG∥OB,

∴∠OBC=∠ECM,∵∠BOC=∠CEM,

∴△CEM∽△BOC,

∵OC:OB:BC=1:3:

∴EM:CE:CM=1:3:

∴EM=CM,

∴PM+CM=PM+ME,

∴根据垂线段最短可知,当PE⊥CG时,PM+ME最短,

∴PM+MC的最小值为+=

(3)存在.理由如下,

①如图3中,当DH=HF,HQ平分∠DHF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线 是对称轴.

作CG⊥HK于G,PH∥x轴,EP⊥PH于P.

∵FH∥CK,K(,﹣),

易知CG:GK:CK=3:4:5,

由△EPH∽△KGC,得PH:PE:EH=3:4:5,设E((n, n2n﹣),则HE=(n﹣),PE=(n﹣),

∵DH=HF,

+[﹣n2+n+(n﹣)]=(n﹣)+

解得n=(舍弃).

②如图4中,当DH=HF,HQ平分∠DHF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线 是对称轴.

同法可得[n2n﹣+(n﹣)]﹣=(n﹣)+

解得n=+(舍弃).

③如图5中,当DH=DF,DQ平分∠HDF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线 是对称轴.

设DQ交HF于M.由△DHM∽△CKG,可知HM:DH=4:5,

[(n﹣)+]:[n2n﹣+(n﹣)﹣]=4:5,

解得n=+或=(舍弃),

④如图6中,当FQ平分∠DFH时,满足条件,此时=

∴5× [n2n﹣+(n﹣)]=4[(n﹣)+],

解得:n=(舍弃)

综上所,满足条件的点E的横坐标为++

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,C是O上一点,D在AB的延长线上,且BCD=A.

(1)求证:CD是O的切线;

(2)若O的半径为3,CD=4,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆柱形玻璃杯,高为,底面周长为,在杯内离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂蜜的最短距离为( ).

A. 15B. C. 12D. 18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y2x+6x轴于A,交y轴于B

1)直接写出A      ),B      );

2)如图1,点E为直线yx+2上一点,点F为直线yx上一点,若以ABEF为顶点的四边形是平行四边形,求点EF的坐标

3)如图2,点Cmn)为线段AB上一动点,D(﹣7m0)在x轴上,连接CD,点MCD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装厂生产一种夹克和T恤,夹克每件定价120元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T件(30).

1)若该客户按方案①购买,需付款    元(用含x的代数式表示);

若该客户按方案②购买,需付款    元(用含x的代数式表示);

2)若=40,通过计算说明按方案①、方案②哪种方案购买较为合算?

3)若两种优惠方案可同时使用,当=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如就是完全对称式(代数式中换成bb换成,代数式保持不变).下列三个代数式:①;②;③.其中是完全对称式的是(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个超市以同样的价格出售同样的商品,但各自推出不同的优惠方案:在甲超市累计购物超过100元后,超过100元的部分按80%收费;在乙超市累计购物超过50元后,超过50元的部分按90%收费.设小明在同一超市累计购物元,他在甲超市购物实际付费().在乙超市购物实际付费().

(1)分别求出的函数关系式.

(2)随着小明累计购物金额的变化,分析他在哪家超市购物更合算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备

后,乙组的工作效率是原来的2倍.两组各自加工零件的数量()与时间()的函数图

象如图所示.

1)求甲组加工零件的数量y与时间之间的函数关系式.(2分)

2)求乙组加工零件总量的值.(3分)

3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,则DM的长为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案