精英家教网 > 初中数学 > 题目详情
如图1,在平面直角坐标系中,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上.现将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上(如图2),设抛物线y=ax2+bx+c(a<0),如果抛物线同时经过点O、B、C:
①当n=3时a=______;
②a关于n的关系式是______.
①如图当n=3时,OC=1,BC=3,
设所求抛物线解析式为y=ax2+bx,
过C作CD⊥OB于点D,
则Rt△OCDRt△OBC,
OD
CD
=
OC
BC
=
1
3

设OD=t,则CD=3t,
∵OD2+CD2=OC2
∴(3t)2+t2=12,∴t=
1
10
=
10
10

∴C(
10
10
3
10
10
),又B(
10
,0),
∴把B、C坐标代入抛物线解析式,得
0=10a+
10
b
3
10
10
=
1
10
a+
10
10
b

解得:a=-
10
3

故答案为:-
10
3

②当n=2时,OC=1,BC=2,
∴OB=
5

∴1×2=
5
CD,B(
5
,0)
∴CD=
2
5
5

∴OD=
5
5

∴C(
5
5
2
5
5

设所求抛物线解析式为y=ax2+bx,
0=5a+
5
b
2
5
5
=
1
5
a+
5
5
b

解得:a=-
5
2

同理当n=4时,a=-
17
4

∴可以得出a关于n的关系式是:a=-
n2+1
n


故答案为:-
10
3
a=-
n2+1
n
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,矩形的长是4cm,宽是3cm,如果将长和宽都增加xcm,那么面积增加ycm2
(1)求y与x的函数表达式;
(2)求当边长增加多少时,面积增加8cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,抛物线经过点A(12,0)、B(-4,0)、C(0,-12).顶点为M,过点A的直线y=kx-4交y轴于点N.
(1)求该抛物线的函数关系式和对称轴;
(2)试判断△AMN的形状,并说明理由;
(3)将AN所在的直线l向上平移.平移后的直线l与x轴和y轴分别交于点D、E(如图②).当直线l平移时(包括l与直线AN重合),在抛物线对称轴上是否存在点P,使得△PDE是以DE为直角边的等腰直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,圆M与x轴相交于A,B两点,其坐标分别为A(-3,0),B(1,0),直径CD垂直于x轴于N,直线CE切圆M于C,直线FG切圆M于F,交CE于G,已知点G的横坐标为3,
(1)若抛物线y=-x2-2x+m经过A,B,D三点,求m的值及点D的坐标;
(2)求直线DF的解析式;
(3)是否存在过点G的直线,使它与(1)中抛物线的两个交点的横坐标之和等于4?若存在,请求出满足条件的直线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,请解答下列问题:
(1)求抛物线的解析式.
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.
注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-
b
2a

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD的顶点B、C在x轴上,A、D在抛物线y=ax2+bx上,且y=ax2+bx的最大值是2,y=ax2+bx与x轴的正半轴的交点E的坐标是(2,0).
(1)求a,b的值;
(2)若矩形的顶点均为动点,且矩形在抛物线与x轴围成的封闭区域内,试探索:是否存在周长为3的矩形?若存在,求出此时B点的坐标;若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,一抛物线的对称轴为直线x=1,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.
(1)求此抛物线的解析式;
(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,点C(
3
,0),点D(0,1),CD的中垂线交CD于点E,交y轴于点B,点P从点C出发沿CO方向以每秒2
3
个单位的速度运动,同时点Q从原点O出发沿OD方向以每秒1个单位的速度向点D运动,当点Q到达点D时,点P,Q同时停止运动,设运动的时间为秒.
(1)求出点B的坐标;
(2)当t为何值时,△POQ与△COD相似?
(3)当点P在x轴负半轴上时,记四边形PBEQ的面积为S,求S关于t的函数关系式,并写出自变量的取值范围;
(4)在点P、Q的运动过程中,将△POQ绕点O旋转180°,点P的对应点P′,点Q的对应点Q′,当线段P′Q′与线段BE有公共点时,抛物线y=ax2+1经过P′Q′的中点,此时的抛物线与x轴正半轴交于点M.由已知,直接写出:①a的取值范围为______;②点M移动的平均速度是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=-
1
2
x+1交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E.

(1)请直接写出点C,D的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒
5
个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.

查看答案和解析>>

同步练习册答案