Èçͼ£¬¶þ´Îº¯Êýy=-
12
x2+2
ÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚCµã£¬µãP´ÓAµã³ö·¢£¬ÒÔ1¸öµ¥Î»Ã¿ÃëµÄËÙ¶ÈÏòµãBÔ˶¯£¬µãQͬʱ´ÓCµã³ö·¢£¬ÒÔÏàͬµÄËÙ¶ÈÏòyÖáÕý·½ÏòÔ˶¯£¬Ô˶¯Ê±¼äΪtÃ룬µãPµ½´ïBµãʱ£¬µãQͬʱֹͣÔ˶¯£®ÉèPQ½»Ö±ÏßACÓÚµãG£®
£¨1£©ÇóÖ±ÏßACµÄ½âÎöʽ£»
£¨2£©Á¬½ÓPC£¬Éè¡÷PQCµÄÃæ»ýΪS£¬ÇóS¹ØÓÚtµÄº¯Êý½âÎöʽ£»
£¨3£©ÔÚyÖáÉÏÕÒÒ»µãM£¬Ê¹¡÷MACºÍ¡÷MBC¶¼ÊǵÈÑüÈý½ÇÐΣ¬Ö±½Óд³öËùÓÐÂú×ãÌõ¼þµÄMµãµÄ×ø±ê£®
·ÖÎö£º£¨1£©¸ù¾Ý¶þ´Îº¯Êý½âÎöʽÇó³öµãA¡¢B¡¢CµÄ×ø±ê£¬È»ºóÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¬ÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ½â´ð¼´¿É£»
£¨2£©·ÖµãPÔÚOAÉÏÓëOBÉÏÁ½ÖÖÇé¿ö·Ö±ð±íʾ³öOP¡¢CQµÄ³¤¶È£¬ÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½ÁÐʽÕûÀí¼´¿ÉµÃ½â£»
£¨3£©¸ù¾Ý¹´¹É¶¨ÀíÁÐʽÇó³öACµÄ³¤¶È£¬ÔÙ·ÖAC¡¢BCÊǵױßÓëÑüÌÖÂÛÇó½â¼´¿É£®
½â´ð£º½â£º£¨1£©Áîy=0£¬Ôò-
1
2
x2+2=0£¬
½âµÃx1=-2£¬x2=2£¬
ËùÒÔ£¬µãA£¨-2£¬0£©£¬B£¨2£¬0£©£¬
Áîx=0£¬Ôòy=2£¬
ËùÒÔ£¬µãCµÄ×ø±êÊÇ£¨0£¬2£©£¬
ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¬
Ôò
-2k+b=0
b=2
£¬
½âµÃ
k=1
b=2
£¬
ËùÒÔ£¬Ö±ÏßACµÄ½âÎöʽΪy=x+2£»

£¨2£©¢ÙµãPÔÚOAÉÏ£¬¼´0£¼t£¼2ʱ£¬
¡ßµãP¡¢QµÄËٶȶ¼ÊÇÿÃë1¸öµ¥Î»£¬
¡àOP=2-t£¬OQ=t£¬
¡à¡÷PQCµÄÃæ»ýS=
1
2
t£¨2-t£©=-
1
2
t2+t£¬
¢ÚµãPÔÚOBÉÏ£¬¼´2£¼t¡Ü4ʱ£¬
¡ßµãP¡¢QµÄËٶȶ¼ÊÇÿÃë1¸öµ¥Î»£¬
¡àOP=t-2£¬OQ=t£¬
¡à¡÷PQCµÄÃæ»ýS=
1
2
t£¨t-2£©=
1
2
t2-t£¬
¡àS=
-
1
2
t
2
+t(0£¼t£¼2)
1
2
t
2
-t(2£¼t¡Ü4)
£»

£¨3£©¡ßA£¨-2£¬0£©£¬B£¨2£¬0£©£¬C£¨0£¬2£©£¬
¡àOA=OB=OC=2£¬
¸ù¾Ý¹´¹É¶¨Àí£¬AC=
OA2+OC2
=
22+22
=2
2
£¬
Èçͼ£¬¢ÙµãMΪ×ø±êÔ­µã£¨0£¬0£©Ê±£¬AC¡¢BCΪµ×±ß£¬
¢ÚAC¡¢BCΪµ×±ßʱ£¬ÈôOM=OC=2£¬ÔòµãM£¨0£¬-2£©£¬
ÈôCM=AC=2
2
£¬ÔòOM=CM-OC=2
2
-2£¬
´ËʱµãM£¨0£¬2-2
2
£©£¬
»òOM=CM+OC=2
2
+2£¬
´ËʱµãM£¨0£¬2+2
2
£©£¬
ËùÒÔ£¬µãMµÄ×ø±êΪ£¨0£¬0£©»ò£¨0£¬-2£©»ò£¨0£¬2-2
2
£©»ò£¨0£¬2+2
2
£©£®
µãÆÀ£º±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌâÐÍ£¬Ö÷Òª¿¼²éÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ£¬Èý½ÇÐεÄÃæ»ý£¬µÈÑüÈý½ÇÐεÄÐÔÖÊ£¬£¨2£©Òª·ÖÁ½¶ÎÇó½â²¢ÇÒtµÄÖµ²»ÄÜÈ¡2£¬£¨3£©Òª·ÖÇé¿öÌÖÂÛ£¬×÷³öͼÐθüÐÎÏóÖ±¹Û£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬¶þ´Îº¯ÊýµÄͼÏó¾­¹ýµãD£¨0£¬
7
9
3
£©£¬ÇÒ¶¥µãCµÄºá×ø±êΪ4£¬¸ÃͼÏóÔÚxÖáÉϽصõÄÏ߶ÎABµÄ³¤Îª6£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÔÚ¸ÃÅ×ÎïÏߵĶԳÆÖáÉÏÕÒÒ»µãP£¬Ê¹PA+PD×îС£¬Çó³öµãPµÄ×ø±ê£»
£¨3£©ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹¡÷QABÓë¡÷ABCÏàËÆ£¿Èç¹û´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¶þ´Îº¯ÊýͼÏóµÄ¶¥µãΪ×ø±êÔ­µãO£¬ÇÒ¾­¹ýµãA£¨3£¬3£©£¬Ò»´Îº¯ÊýµÄͼÏó¾­¹ýµãAºÍµãB£¨6£¬0£©£®
£¨1£©Çó¶þ´Îº¯ÊýÓëÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Èç¹ûÒ»´Îº¯ÊýͼÏóÓëyÏཻÓÚµãC£¬µãDÔÚÏ߶ÎACÉÏ£¬ÓëyÖáƽÐеÄÖ±ÏßDEÓë¶þ´Îº¯ÊýͼÏóÏཻÓÚµãE£¬¡ÏCDO=¡ÏOED£¬ÇóµãDµÄ×ø±ê£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÓëxÖá½»ÓÚB¡¢CÁ½µã£¬ÓëyÖá½»ÓÚµãA£¨0£¬-3£©£¬¡ÏABC=45¡ã£¬¡ÏACB=60¡ã£¬ÇóÕâ¸ö¶þ´Îº¯Êý½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ij¹«Ë¾ÍƳöÁËÒ»ÖÖ¸ßЧ»·±£ÐÍÏ´µÓÓÃÆ·£¬Äê³õÉÏÊк󣬹«Ë¾¾­ÀúÁË´Ó¿÷Ëðµ½Ó¯ÀûµÄ¹ý³Ì£¬ÈçͼµÄ¶þ´Îº¯ÊýͼÏ󣨲¿·Ö£©¿Ì»­Á˸ù«Ë¾Äê³õÒÔÀ´ÀÛ»ýÀûÈós£¨ÍòÔª£©Óëʱ¼ät£¨Ô£©Ö®¼äµÄ¹Øϵ£¨¼´Ç°t¸öÔµÄÀûÈó×ܺÍsÓëtÖ®¼äµÄ¹Øϵ£©£®¸ù¾ÝͼÏóÌṩµÄÐÅÏ¢£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÇóÀÛ»ýÀûÈós£¨ÍòÔª£©Óëʱ¼ät£¨Ô£©Ö®¼äµÄº¯Êý¹Øϵʽ£»
£¨2£©Çó½ØÖ¹µ½¼¸ÔÂÄ©¹«Ë¾ÀÛ»ýÀûÈó¿É´ï30ÍòÔª£»
£¨3£©´ÓµÚ¼¸¸öÔÂÆð¹«Ë¾¿ªÊ¼Ó¯Àû£¿¸ÃÔ¹«Ë¾Ëù»ñÀûÈóÊǶàÉÙÍòÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÓëxÖáÏཻÓÚÁ½¸öµã£¬¸ù¾ÝͼÏó»Ø´ð£º£¨1£©b
£¾
£¾
0£¨Ìî¡°£¾¡±¡¢¡°£¼¡±¡¢¡°=¡±£©£»
£¨2£©µ±xÂú×ã
x£¼-4»òx£¾2
x£¼-4»òx£¾2
ʱ£¬ax2+bx+c£¾0£»
£¨3£©µ±xÂú×ã
x£¼-1
x£¼-1
ʱ£¬ax2+bx+cµÄÖµËæxÔö´ó¶ø¼õС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸