精英家教网 > 初中数学 > 题目详情

【题目】有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:

(1)A、B两点之间的距离是   米,甲机器人前2分钟的速度为   /分;

(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;

(3)若线段FGx轴,则此段时间,甲机器人的速度为   /分;

(4)求A、C两点之间的距离;

(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.

【答案】(1)距离是70米,速度为95/分;(2)y=35x﹣70;(3)速度为60/分;(4)=490米;(5)两机器人出发1.2分或2.8分或4.6分相距28米.

【解析】

(1)x=0时的y值即为A、B两点之间的距离由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离

(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;

(3)由图可知甲乙速度相同;

(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;

(5)0-2分钟、2-3分钟和4-7分钟三段考虑.

解:(1)由图象可知,A、B两点之间的距离是70米,

甲机器人前2分钟的速度为:(70+60×2)÷2=95/分;

(2)设线段EF所在直线的函数解析式为:y=kx+b,

∵1×(95﹣60)=35,

F的坐标为(3,35),

,解得

线段EF所在直线的函数解析式为y=35x﹣70;

(3)∵线段FG∥x轴,

甲、乙两机器人的速度都是60/分;

(4)A、C两点之间的距离为70+60×7=490米;

(5)设前2分钟,两机器人出发x分钟相距28米,

由题意得,60x+70﹣95x=28,解得,x=1.2,

2分钟﹣3分钟,两机器人相距28米时,

由题意得,35x﹣70=28,解得,x=2.8.

4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),

设线段GH所在直线的函数解析式为:y=kx+b,

,解得

则直线GH的方程为y=x+

y=28时,解得x=4.6,

答:两机器人出发1.2分或2.8分或4.6分相距28米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校在宣传民族团结活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.

请结合图中所给信息,解答下列问题:

(1)本次调查的学生共有_____人;

(2)补全条形统计图;

(3)该校共有1200名学生,请估计选择唱歌的学生有多少人?

(4)七年一班在最喜欢器乐的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角是45°,沿斜坡走米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为12(参考数据:sin31°≈0.52cos31°≈0.86tan31°≈0.60).

1)求小明从点A走到点D的过程中,他上升的高度;

2)大树BC的高度约为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就学生体育活动兴趣爱好的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:

1)在这次调查中,喜欢篮球项目的同学有   人,在扇形统计图中,乒乓球的百分比为   %,如果学校有800名学生,估计全校学生中有   人喜欢篮球项目.

2)请将条形统计图补充完整.

3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AFCD于点E,交BC的延长线于点F

1)求证:BF=CD

2)连接BE,若BEAFBFA=60°BE=,求平行四边形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:祖冲之奖刘徽奖赵爽奖杨辉奖,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获祖冲之奖的学生成绩统计表:

祖冲之奖的学生成绩统计表:

分数

80

85

90

95

人数

4

2

10

4

根据图表中的信息,解答下列问题:

这次获得刘徽奖的人数是多少,并将条形统计图补充完整;

获得祖冲之奖的学生成绩的中位数是多少分,众数是多少分;

在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点用列表法或树状图法求这个点在第二象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点,且点B在双曲线上,在AB的延长线上取一点C,过点C的直线交双曲线于点D,交x轴正半轴于点E,且,则线段CE长度的取值范围是  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x轴交于AB(点A在点B的左侧)与y轴交于点C,连接ACBC.过点AADBC交抛物线于点D810),点P为线段BC下方抛物线上的任意一点,过点PPEy轴交线段AD于点E

1)如图1.当PE+AE最大时,分别取线段AEAC上动点GH,使GH=5,若点MGH的中点,点N为线段CB上一动点,连接ENMN,求EN+MN的最小值;

2)如图2,点F在线段AD上,且AFDF=73,连接CF,点QR分别是PE与线段CFBC的交点,以RQ为边,在RQ的右侧作矩形RQTS,其中RS=2,作∠ACB的角平分线CKAD于点K,将ACK绕点C顺时针旋转75°得到A′CK′,当矩形RQTSA′CK′重叠部分(面积不为0)为轴对称图形时,请直接写出点P横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.

查看答案和解析>>

同步练习册答案